首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of reactive cyclopentadienyliron complexes C5H5Fe(CO)2I, [C5H5Fe(CO)2THF]BF4, [C5H5Fe(CO)((CH3)2S)2]BF4 and [C5H5Fe(p-(CH3)2C6H4)]PF6 with P(OR)3 as ligands (R = CH3, C2H5, i-C3H7 and C6H5) lead to the formation of the complex compounds C5H5Fe(CO)2?n(P(OR)3)nI and [C5H5Fe(CO)3?n(P(OR)3)n]X (n = 1, 2 and n = 1–3, X = BF4, PF6). Spectroscopic investigations (IR, 1H, 13C and 31P NMR) indicate an increase of electron density on the central metal with increasing substitution of CO groups by P(OR)3 ligands. The stability of the compounds increase in the same way.  相似文献   

2.
The preparation of (borinato)(cyclobutadiene)cobalt complexes from the reactions of Co(C5H5BR)(1,5-C8H12) with acetylenes C2R′2 and of [C4(CH3)4]Co(CO)2I with Tl(C5H5BR) (R,R′ = CH3, C6H5) is described.In electrophilic substitution reactions Co(C5H5BCH3)[C4(CH3)4] (IVa) is more reactive than ferrocene. CF3CO2D effects H/D-exchange in the α-position of the borabenzene ring within a few minutes at ambient temperature and in the γ-position within less than four hours Friedel-Crafts acetylation with CH3COCl/AsCl3 in CH2Cl2 affords the 2-acetyl and the 2,6-diacetyl derivative of IVa. With the more active catalyst AlCl3, ring-member substitution is effected to give cations [Co(arene)C4(CH3)4]+ (arene = C6H5CH3, 2-CH3C6H4COCH3). Vilsmeier formylation gives the 2-formyl derivative of IVa. The acyl derivatives Co(2-R1CO-6-R2C5H3BCH3)[C4(CH3)4] (R1 = CH3, R2 = H, CH3CO and R1 = R2 = H) transform to the corresponding cations [Co(ortho-R1R2C6H4)C4(CH3)4]+ in superacidic media. The mechanistic relationship between acylation and ring-member substitution is discussed in detail.  相似文献   

3.
The photo‐induced substitution of a CO ligand has been used to prepare the halfsandwich complexes (η3‐C3H5)V(CO)4[P(C7H7)3] ( 1 ), (η5‐C5H5)V(CO)3[P(C7H7)3] ( 2 ), (η7‐C7H7)V(CO)2[P(C7H7)3] ( 3 ), (η6‐C6H3Me3)Cr(CO)2[P(C7H7)3] ( 4 ), and (η5‐C5H5)Mn(CO)2[P(C7H7)3] ( 7 ), in which the olefinic phosphane is coordinated as a conventional two‐electron ligand through the lone pair of electrons at phosphorus. Some analogues, which are permethylated at the aromatic ring ( 2* , 4* , 7* ), were included for comparison. Subsequent photo‐elimination of another CO group from 4 or 7 converts the olefinic phosphane into a chelating four‐electron ligand, leading to (η6‐C6H3Me3)Cr(CO)[P(C7H7)22‐C7H7)] ( 5 ) and (η5‐C5H5)Mn(CO)[P(C7H7)22‐C7H7)] ( 8 ), respectively. The η2‐coordinated double bond in 5 and 8 can be displaced by trimethylphosphite to give (η6‐C6H3Me3)Cr(CO)[P(C7H7)3][P(OMe)3] ( 6 ) and (η5‐C5H5)Mn(CO)[P(C7H7)3][P(OMe)3] ( 9 ). The 31P and 13C NMR spectra of all complexes are discussed, and X‐ray structure analyses for 2 and 8 are presented. Prolonged irradiation of 7 and 8 led to a di(cycloheptatrienyl)phosphido‐bridged dimer, {(η5‐C5H5)Mn(CO)[P(C7H7)2]}2( 10 ).  相似文献   

4.
Reactions of the Cycloheptatrienyl Complexes [η7-C7H7W(CO)3]BF4 and η7-C7H7Mo(CO)2Br with Neutral Ligands and the Electrochemical Reduction of the Wolfram Complex Compounds of the type [η7-C7H7M(CO)2L][BF4] (L = P(C6H5)3, As(C6H5)3, Sb(C6H5)3 for M = W and L = N2H4 for M = Mo) were synthesized and characterisized. The iodide η7-C7H7W(CO)2I reacts with the diphosphine ((C6H5)2PCH2)2 to give the trihapto complex η3-C7H7 W(CO)2I((C6H5)2PCH2)2. In the case of η7-C7H7Mo(CO)2 Br reaction with hydrazine leads to the substitution product [η7-C7H7 Mo(CO)2N2H4], which can be stabilized by large anions. The binuclear complex [C7H7W(CO)3]2 has been synthesized electrochemically.  相似文献   

5.
ortho-Substituted aryliridium(I) complexes of the type [Ir(RnC6H5-n)(CO)L2] (RnC6H5-n = 2-EtC6H4; 2,6-Et2C6H3; L = PPh3 PMePh2) have been prepared from [IrCl(CO)L2] and the corresponding aryllithiums. With the exception of trans-[Ir(2-EtC6H4)(CO)(PPh3)2] these compounds show cis, trans isomerism. After separation, the isomers have been studied by NMR (1H, 31P), IR, and UV-VIS spectroscopy. ab]Durch Umsetzung von [IrCl(CO)L2] (L = PPh3, PMePh2) mit den entsprechenden Lithiumarylen wurden ortho-substituierte Aryliridium(I)-Komplexe des Typs [Ir(Rn C6H5-n)(CO)L2] (RnC6H5?n = 2-EtC6H4; 2,6-Et2C6H3; 2-Et-6-MeC6H3) dargestellt. Mit Ausnahme von trans-[Ir(2-EtC6H4)(CO)(PPh3)2] zeigen diese Verbindungen die Erscheinung der cis,trans-Isomerie. Die Isomere wurden getrennt und mit Hilfe NMR- (1H, 31P), IR- und UV/VIS-spektroskopischer Methoden untersucht.  相似文献   

6.
The reaction of 2-borolenes and 3-borolenes C4H6BR (R = Ph, Me, C6H11, OMe) with Mn, Fe, and Co carbonyls leads to dehydrogenating complexation with formation of simple, i.e. C-unsubstituted (η5-borole)metal complexes. Thus, Mn2(CO)10 gives the triple-decked complexes (μ-η5-C4H4BR)[Mn(CO)3]2 (R = Ph, OMe). By irradiation of Fe(CO)5 the half-sandwich complexes Fe(CO)35-C4H4BR) (R = Ph, Me, C6H11, OMe) are formed, whereas Co2(CO)8 yields the dinuclear complexes (μ-CO)2[Co(CO)(η5-C4H4BR)]2 (Co-Co) (R = Ph, Me). A low-temperature X-ray structure determination of Fe(CO)35-C4H4BPh) is described in detail.  相似文献   

7.
The novel complexes CpFe(CO)(COR)P(C6H5)2NR'R* with Cp = C5H5,C9H7 (indenyl); R = CH3, C2H5, CH(CH3)2, CH2C6H5;R` = H, CH3, C2H5, CH2C6H5 and R* = (S)-CH(CH3)(C6H5), have been synthesized by reaction of CpFe(CO)2R wiht P(C6H5)2NR`R* and characterized analytically as well as spectroscopically. The pairs of diastereoisomers RS/SS have been separated by preparative liquid chromatography and fractional crystallization, respectively. The optically pure complexes (+)436- und ()436-CpFe(CO)(COR)P(C6H5)2NR`R* are configurationally stable at room temperature. At higher temperatures they equilibrate with CpFe(CO)2R and epimerize with respect to the Fe configuration.  相似文献   

8.
Direct Synthesis of Orthometallated Ketones of the Type RCO(o-C6H4)Mn(CO)4?nLn (R = Alkyl and Aryl Groups, n = 0, 1, 2, L = Ligand) The starting materials of the type RMn(CO)5?nLn und (C6H5)2 Hg react to the products of the type RCO(o-C6H4)Mn(CO)4?nLn[n = 0, R = Ch3, C2H5, C3H7, C6H5,CH2; R = C6H5, n = 1, L = E(C6H5)3, E = P, As, Sb; R = C6H5, n = 2, L = P(OR′)3, R′ = C6H5, CH3, C2H5, C3H7]. Steps of their complex reaction pathway are proposed. These orthometallated substances have been characterized by means of 1H-n.m.r., i.r. and u.v. spectroscopic measurements. The determination of the molecular structure of the two compounds RCO(o-C6H4)Mn(CO)3L [R = C2H5, L = CO; R = C6H5, L = As(C6H5)3] show that both contain a planar heterocyclic five-membered ring of the type .  相似文献   

9.
《Polyhedron》1988,7(6):443-448
The salts [Re(CR)CO)25-C9H7)][BF4] [R = C6H4Me-4 or C6H3Me-2,6; η5- C9H7 = indenyl] have been prepared and used to synthesize the dimetal compounds [FeRe(μ-CR)(μ-NO)(CO)45-C9H7)]. The iron-rhenium species containing a bridging p- tolylmethylidyne ligands react with [Fe2(CO)9] or with [Ru(CO)4(η-C2H4)], respectively, to yield the trimetal compounds ([FeMRe(μ3-CC6H4Me-4)(μ-CO)(μ-NO)(CO)65-C9H7)] (M = Fe or Ru).  相似文献   

10.
C7H7Mo(CO)(PN)I (I) (PN  (S)(+)-(C6H5)2PN(CH3)CH(CH3)(C6H5)) is prepared in 90% yield by reaction of C7H7Mo(CO)2I and PN. The two diastereo-isomers Ia and Ib differing only in the Mo-configuration exhibit chemical shift differences of their C7H7 and CH3 signals. Ia and Ib can be separated by fractional crystallization. In solution Ia epimerizes with respect to the Mo configuration. The half lives in benzene for the equilibration Ia ? Ib are 5.5, 30, and 104 min at 60, 50, and 40°C, respectively. Phosphine exchange experiments show that the epimerization proceeds via PN dissociation.An X-ray structure analysis was carried out on a single crystal of Ia. The absolute configuration at Mo was determined to be (R).  相似文献   

11.
Metal Complexes of Biologically Important Ligands. CXVII [1] Addition of the O'Donnell Reagent [Ph2C=NCHCO2Me] to Coordinated, Unsaturated Hydrocarbons of [(C6H7)Fe(CO)3]+, [C7H9Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo), and [(C2H4)Re(CO)5]+. α-Amino Acids with Organometallic Side Chains The addition of [Ph2C=NCHCO2Me] to [(C6H7)Fe(CO)3]+, [(C7H9)Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo) and [(C2H4)Re(CO)5]+ gives derivatives of α-amino acids with organometallic side chains. The structure of [(η4-C6H7)CH(N=CPh2)CO2Me]Fe(CO)3 was determined by X-ray diffraction. From the adduct of [Ph2C=NCHCO2Me] and [(C7H7)Mo(CO)3]+ the Schiff base of a new unnatural α-amino acid, Ph2C=NCH(C7H7)CO2Me, was obtained.  相似文献   

12.
The photochemical preparation of [M(CO)5(P(CCC6H5)n(C6H5)3-n], cis-[M(CO)4(PCCC6H5)n(C6H5)3-n] (M = Cr, W; n = 1,2,3) and fac-[Cr(CO)3(P(CCC6H5)(C6H5)3] by the corresponding substitution reactions of the hexacarbonyls is described. The IR and Raman spectra of the complexes in the region of the ν(CO) and ν(CC) vibrations and the 31P NMR spectra are discussed.  相似文献   

13.
Tricarbonyl(fulvene)chromium complexes react with anionic nucleophiles to give functionally substituted cyclopentadienyl derivatives. The nucleophilic attack occurs at the exocyclic carbon atom of the fulvene ligand. Addition of PPh2 to (η6-6,6-dimethylfulvene)Cr(CO)3 (1) yields the novel anion [(η5-C5H4C(CH3)2PPh2)Cr-(CO)3], which can be isolated as a K+, (C2H5)4N+, (C6H5)4P+, or Tl+ derivative (2–5). The potassium salt of the uncoordinated C5H4C(CH3)2PPh2 anion (7) is obtained by treatment of 6,6-dimethylfulvene with KPPh2·2C4H8O2. Similarly, NaC5H5 reacts with 1 to give Na[(η5-C5H4C(CH3)2C5H5)Cr(CO)3] (8). The reactions of (6-dimethylaminofulvene)Cr(CO)3 (15) with nucleophiles are accompanied by elimination of dimethylamine. Addition of Ph3P=CH2 to 15 gives an unstable product, but after reaction of 6-dimethylaminofulvene with Ph3P=CH2, the free ligand C5H4=CHCH=PPh3 (17) can be isolated in moderate yields. Deeply colored anions of the type [(η55-C5H4C(R)=C5H4)Cr2(CO)6] (R = H, N(CH3)2) are synthesized by reaction of 15 or (6-dimethylamino-6-methylthiofulvene)Cr(CO)3 with NaC5H5 and subsequent complexation of the mononuclear intermediate with (CH3CN)3Cr(CO)3. In addition, the synthesis of the new fulvene complexes [C5H4=CH(CH=CH)2N(CH3)Ph]M(CO)3 (23, 24; M = Cr, Mo) is described. The investigation is extended to α-ferrocenylcarbenium ions, which are isoelectronic with (fulvene)Cr(CO)3 complexes. [(η5-C5H5)Fe(C5H4CPh2)]+ BF4 (25) adds tertiary phosphines at the exocyclic carbon atom to give phosphonium salts of the type [(η5-C5H5)Fe(C5H4CPh2PR3)]+BF4. A CO-substititution product of a tricarbonyl (fulvene)chromium complex is obtained for the first time by irradiation of (η6-6,6-diphenylfulvene)Cr(CO)3 in the presence of PPh3. In addition, an improved synthesis of the (CH3CN)3M(CO)3 complexes (M = Cr, Mo, W) is reported.  相似文献   

14.
The positive ion mass spectra of the π-pyrrolyl derivatives C4H4NMn(CO)2L (L = (C6H5)3E or CO; E = P, As, or Sb), the π-indenyl derivatives C9H7Mn(CO)2L (L = (C6H5)3E or CO; E = P, As, or Sb) and the π-fluorenyl derivatives C13H9Mn(CO)2L (L = (C6H5)3P or CO) have been investigated. The relative tendencies of ions of the type [QMnE(C6H5)3]+ (Q = π-pyrrolyl, π-indenyl, or π-fluorenyl; E = P, As, or Sb) to fragment by losses of the Q ring system and the (C6H5)3E ligand are compared. Phenyl transfers from phosphorus, arsenic, or antimony to manganese to form relatively high abundances of [C6H5Mn]+ are also observed. Other processes typical of metal carbonyl derivatives (CO losses), aromatic derivatives (C2H2 eliminations) and (C6H5)3E derivatives (phenyl losses, conversion of [(C6H5)3E]+ directly to [C6H5E]+, and formation of [C12H8E]+ 9-heterofluorenyl ions) are observed in these mass spectra and are supported in many cases by the presence of appropriate metastable ions.  相似文献   

15.
Photochemical substitution of CO ligands in C6H6Cr(CO)3, C5H5Mn(CO)3 and M(CO)6 (M = Cr, Mo, W) for PPh2C6H5Cr(CO)3, ligands was used to synthesize novel complexes: C6H6Cr(CO)2PPh2C6H5Cr(CO)3, C5H5Mn(CO)2PPh2C6H5Cr (CO)3 and M(CO)5PPh2C6H5Cr(CO)3.The complexes obtained have been characterized by elemental analysis, IR, 1H, 13C, 31P NMR, and mass spectra.The protonation reaction and the hydrogen isotopic exchange of arenechromium carbonyl complexes in acid media have been studied.The 13C NMR spectra of M(CO)5PPh2C6H5Cr(CO)3 show that the nature of the central metal atom influences the chemical shifts of the carbon nuclei of the carbonyl groups, shielding these atoms, increasing in the series W ⩽ Mo < Cr.  相似文献   

16.
The arene complexes, (η6-C6H6)Cr(CO)2(CX) (X = S, Se), react with excess CO gas under pressure in tetrahydrofuran at about 60° C to produce the Cr(CO)5(CX) complexes in high yield. The IR and NMR (13C and 17O) spectra of these complexes are in complete accord with the expected C4v molecular symmetry. Like the analogous W(CO)5(CS) complex, both compounds react with cyclohexylamine to give Cr(CO)5(CNC6H11). However, while W(CO)5(CS) undergoes stereospecific CO substitution with halide ions (Y? to form trans-[W(CO)4(CS)Y]?, the two chromium chalcocarbonyl complexes apparently undergo both CO and CX substitution to afford mixtures of [Cr(CO)5Y]? and trans-[Cr(CO)4(CX)Y]?.  相似文献   

17.
The alkali metal reductions of a series of monomeric and dimeric cyclopentadienyl-substituted metal carbonyls in hexamethylphosphoramide provide principally C5H5V(CO)32- from C5H5V(CO)4, Mn(CO)43- from C5H5Mn(CO)3, Co(CO)4- from C5H5Co(CO)2, and C5H5M(CO)y- from corresponding [C5H5M(CO)y]2, where M = Mo, Fe and Ni for y = 3, 2 and 1, respectively. The spectral and chemical properties of many of these reduced species are described.  相似文献   

18.
The new ruthenium(II) complex [(C8H10)RuCl2]n (1) (C8H10 = 1,3,5-cyclooctatriene; n ⩾ 2) has been obtained from the reaction of RuCl3·xH2O with 1,3,5,7-cyclooctatetraene in refluxing ethanol. Reduction of [(C8H10)RuCl2]n and [(C7H8)RuCl2]2 (2) (C7H8 = 1,3,5-cyclooctatriene) by Na/Hg amalgam in the presence of isoprene (C5H8) gives the novel ruthenium(O) complexes [(η6-C8H10)Ru(η4-C5H8)] (3) and [(η6-C7H8)Ru(η4-C5H8)] (4). [(η6-C7H8Ru(η4-C5H8)] reacts with CO and HBF4 to give [(η6-C7H8)Ru(η3-C5H9)(CO)][BF4] (C5H9 = trans-1,2-dimethylallyl (5a); 1,1-dimethylallyl (5b)).  相似文献   

19.
Compound [Fe2(μ-CO)2(CO)25-C9H7)2] (1) reacts with aryllithium reagents, ArLi (Ar = C6H5, p-CH3C6H4, p-CF3C6H4) followed by alkylation with Et3OBF4 to give the diindenyl-coordinated diiron bridging alkoxycarbene complexes [Fe2{μ-C(OC2H5)Ar}(μ-CO)(CO)25-C9H7)2] (2, Ar = C6H5; 3, Ar = p-CH3C6H4, 4, Ar = p-CF3C6H4). Complex 4 reacts with HBF4 · Et2O at low temperature to yield cationic bridging carbyne complex [Fe2(μ-CC6H4CF3-p)(μ-CO)(CO)25-C9H7)2]BF4 (5). Cationic 5 reacts with NaBH4 in THF at low temperature to afford diiron bridging arylcarbene complex [Fe2{μ-C(H)C6H4CF3-p}(μ-CO)(CO)25-C9H7)2] (6). The reaction of 5 with NaSC6H4CH3-p under the similar conditions gave the bridging arylthiocarbene complex [Fe2{μ-C(C6H4CF3-p)SC6H4CH3-p}(μ-CO)(CO)25-C9H7)2] (7). Complex 5 can also react with carbonylmetal anionic compounds Na[M(CO)5(CN)] (M = Cr, Mo, W) to produce the diiron bridging aryl(penta-carbonylcyanometal)carbene complexes [Fe2{μ-C(C6H4CF3-p)NCM(CO)5}(μ-CO)(CO)25-C9H7)2] (8, M = Cr; 9, M = Mo; 10, M = W). The structures of complexes 4, 6, 7, and 10 have been established by X-ray diffraction studies.  相似文献   

20.
The reaction of C5H5Rh(CO)(PiPr3) (1] which is prepared from C5H5Rh(CO)2 and neat P1Pr3, with the nitriloxides 2-RC6H4CNO (R = H, Cl) leads to the formation of the metallaheterocycles C5H5(P1Pr3) ) (2, 3) in 90–95% yield. Compound 1 reacts with tosylazide to give the C,N-bound isocyanate complex C5 H5(PiPr3)Rh(η2-TosN=C=O) (6). Analogously, on treatment of C5Me5Co(CO)(PMe3) with phenylazide the phenylisocyanate derivative C5Me5(PMe3)Co(η2-PhN=C=O) (7) is formed. Protonation of 7 with CF3CO 2H affords the non-ionic carbamoylcobalt complex C5Me5(PMe3)Co[C(O)NHPh](O2CCF3) (8). The X-ray structural analysis of 2 reveals the presence of an almost planar heterocycle in which the two Rh-C distances differ by 0.045 Å  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号