首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactivity of mixed [organohydrazido(1-)][organohydrazido(2-)]molybdenum(VI) complexes [Mo(NHNRPh)(NNRPh)(acac)X2] {R?=?Ph, X?=?Br (1); R?=?Ph, X?=?I (2) and R?=?Me; X?=?I (3)} with tertiary phosphines as PPh3, PMePh2 and PMe2Ph are examined. The syntheses of [Mo(NNPh2)2Br2(PPh3)] (4), [Mo(NNPh2)2Br2(PMePh2)2] (5), [Mo(NNPh2)2Br2(PMe2Ph)2] (6), [Mo(NNPh2)2(acac)I(PPh3)] (7), [Mo(NNPh2)2(acac)(PMePh2)2]+I? (8) and [Mo(NNMePh)2(acac)(PMePh2)2]+I? (9) are reported. All complexes were characterized by elemental analysis, UV-visible, IR, 1H and 31P{H} NMR spectroscopy.  相似文献   

2.
The complexes [Ir(cod)Ln]PF6(I, L = PPh3, PMePh2; n = 2. L = PMe2Ph; n = 3) react with HX to give [IrHX(cod)L2]PF6 (II, L = PMePh2 or PMe2Ph) or [IrHX2(cod)(PPh3)] (III). The intermediates [IrX(cod)L2] have, in two cases (L = PMePh2, X = I, Br), been directly isolated from the reaction mixtures at 0°C, and are also formed from I with KX (L = PPh3, X = Cl; L = PMePh2, X = Cl, Br, I); these intermediates protonate to give II (L = PMePh2), or an equimolar mixture of III and I (L = PPh3, X = Cl). Surprisingly, I2 reacts with I in MeOH to give III (L = PPh3). The stereochemistries of II and III were determined by < 1H NMR and especially by new methods using 13C NMR spectroscopy. The complexes I exhibit a Lewis acid reactivity pattern.  相似文献   

3.
The reactions of [MCl2(PP)] and [MCl2(PR3)2)] with 1-mercapto-2-phenyl-o-carborane/NaSeCboPh and 1,2-dimercapto-o-carborane yield mononuclear complexes of composition, [M(SCboPh)2(PP)], [M(SeCboPh)2(PP)] (M = Pd or Pt; PP = dppm (bis(diphenylphosphino)methane), dppe (1,2-bis(diphenylphosphino)ethane) or dppp (1,3-bis(diphenylphosphino)propane)) and [M(SCboS)(PR3)2] (2PR3 = dppm, dppe, 2PEt3, 2PMe2Ph, 2PMePh2 or 2PPh3). These complexes have been characterized by elemental analysis and NMR (1H, 31P, 77Se and 195Pt) spectroscopy. The 1J(Pt–P) values and 195Pt NMR chemical shifts are influenced by the nature of phosphine as well as thiolate ligand. Molecular structures of [Pt(SCboPh)2(dppm)], [Pt(SeCboPh)2(dppm)], [Pt(SCboS)(PMe2Ph)2] and [Pt(SCboS)(PMePh2)2] have been established by single crystal X-ray structural analyses. The platinum atom in all these complexes acquires a distorted square planar configuration defined by two cis-bound phosphine ligands and two chalcogenolate groups. The carborane rings are mutually anti in [Pt(SCboPh)2(dppm)] and [Pt(SeCboPh)2(dppm)].  相似文献   

4.
The reactions of [MCl2(PP)] and [MCl2(PR3)2)] with 1-mercapto-2-phenyl-o-carborane/NaSeCboPh and 1,2-dimercapto-o-carborane yield mononuclear complexes of composition, [M(SCboPh)2(PP)], [M(SeCboPh)2(PP)] (M = Pd or Pt; PP = dppm (bis(diphenylphosphino)methane), dppe (1,2-bis(diphenylphosphino)ethane) or dppp (1,3-bis(diphenylphosphino)propane)) and [M(SCboS)(PR3)2] (2PR3 = dppm, dppe, 2PEt3, 2PMe2Ph, 2PMePh2 or 2PPh3). These complexes have been characterized by elemental analysis and NMR (1H, 31P, 77Se and 195Pt) spectroscopy. The 1J(Pt–P) values and 195Pt NMR chemical shifts are influenced by the nature of phosphine as well as thiolate ligand. Molecular structures of [Pt(SCboPh)2(dppm)], [Pt(SeCboPh)2(dppm)], [Pt(SCboS)(PMe2Ph)2] and [Pt(SCboS)(PMePh2)2] have been established by single crystal X-ray structural analyses. The platinum atom in all these complexes acquires a distorted square planar configuration defined by two cis-bound phosphine ligands and two chalcogenolate groups. The carborane rings are mutually anti in [Pt(SCboPh)2(dppm)] and [Pt(SeCboPh)2(dppm)].  相似文献   

5.
The PH bond of dialkylphosphites (dimethylphosphite, 5,5-dimethyl-1,3-dioxa-2-phosphorinane and 4,4,5,5-tetramethyl-1,3-dioxa-2-phospholane) oxidatively adds to irClL2(L = PPh3, AsPh3) and IrCl(PMe2Ph)3 generated in situ to give six-coordinate hydrido(dialkylphosphonato)iridium(III) complexes, e.g. IrHClL2[{(MeO)2-PO}2H] and IrHCl(PMe2Ph)3[PO(OMe)2]. Addition of triphenylphosphine to a solution containing [IrCl(C8H14)2]2 and dimethylphosphite in a 1:2 mol ratio gives a five-coordinate hydrido (dimethylphosphonato)iridium(III) complex IrHCl(PPh3)2{PO(OMe)2}, from which six-coordinate pyridine and acetylacetonato complexes IrHCl(PPh3)2(C5H5N){PO(OMe)2} and IrH(PPh3)2(acac){PO(OMe)2} can be obtained. The ligand arrangements in the various complexes are inferred from IR, 1H and 31P NMR data.  相似文献   

6.
Reaction of excess MeLi and MeI with [PtCl2SMe2)2] gives the first binuclear tetramethylplatinum(IV) complex [Pt2Me8(μ-SMe2)2]. The characterization of this complex, and its reactions with donor ligands to give cis-[PtMe4L2] (L2 = Ph2PCH2PPh2, Ph2PCH2CH2PPh2, 2,2′-bipyridyl, 1,10-phenanthroline or L = PMe2Ph, PMePh2) are described.  相似文献   

7.
A high-yield synthesis of [IrCl(cod)]2 (cod = 1,5-cyclooctadiene) is described. The 1H and 13C NMR spectra of a number of complexes [IrCl(cod)L] are interpreted in terms of a trans-effect series Cl? < sym-collidine < 2-picoline < PCy3 < P-i-Pr3 < Pet3 ~ AsPh3 < PMe2Ph < PMePh2 < PPh2 <P(MeO)Ph2 < PClPh2 < P(OPh)3 < PCl2Ph. Some ligand exchange reactions of [IrCl(cod)L] are discussed. A number of complexes of the type [Ir(cod)Ln]PF6 (L = a variety of amines (n = 2) and phosphines (n = 2 or 3)) are described. Exchange reactions of the sort: [Ir(cod)(PR3)2]PF6 + [Ir(cod)(py)2]PF6 ? [Ir(cod)(PR3)Py]PF6 are reported in which, surprisingly, the isolable mixed ligand complexes are the only detectable species at equilibrium (py = pyridine).  相似文献   

8.
A route to the stable hydrido-diene salts [(diene)RuHL3] PF6, (diene = cycloocta-l,5-diene, hexa-l,3-diene and buta-1,3-diene, L = PMe2 Ph; diene = cycloocta-l,5-diene, L = P(OMe)3, P(OCH2)3 CMe P(OMe)Ph2 and PMePh2) has been found and the structure of [RuH(C4H6)(PMe2Ph)3] PF6 has been determined by X-ray diffraction.  相似文献   

9.
The mixed ligand complexes PtX2(ER3)L and PtXY(ER3)L (where ER3 = PR3 or AsMe3; L = phosphine, arsine; X = Cl; Y = Cl, H or Me) have been prepared and characterized. Reaction of PtMe2(ER3)L with HCl yields PtMeCl(ER3)L, in exclusively one of three possible isomeric forms. Excess tetramethyltin reacts with Pt2Cl2(μ-Cl)2(PMe2Ph)2 giving both cis and trans Pt2(μ-Cl)2(PMe2Ph)2, as identified from the NMR spectra. Cleavage of Pt2(μ-Cl)2Me2(PMe2Ph)2 with donor ligands such as AsPh3, PMe2 or pyridine, was useful as a synthetic route to the unsymmetrical methylchloro PtII derivatives. The reaction of cis-[PtMe2(PPh3)(AsPh3)] with excess dimethylacetylenedicarboxylate (DMA) yielded only one product, which was of the formula trans-[Pt{C(COOCH3)C(COOCH3)CH3}2(PPh3)(AsPh3)], with the alkenyl groups having the same geometry about the CC bond. The use of diethylacetylene-dicarboxylate (DEA) rather than DMA gave a similar product. However, when cis-[PtMe2(PEt3)(AsPh3)] was allowed to react with DMA, two products of the formula trans-[Pt{C(COOCH3)C(COOCH3)CH3}2(PEt3)(AsPh3)] were obtained, with the stereochemistry of both alkenyl groups being either cis or trans.  相似文献   

10.
The reaction of [Pt2X2(-Cl)2(PR3)2] with NaSpy or NaSepy gave complexes of the type [PtX(Epy)(PR3)]n (X=Cl or Ar; E=S or Se; PR3=PEt3, PMe2Ph, PMePh2 or PPh3; n=1 or 2) which were characterized by elemental analysis and by 1H, 31P{1H}, 195Pt{1H} n.m.r. spectroscopy. When X=Cl a dynamic equilibrium between [Pt2Cl2(-Spy)2(PR3)2] and [PtCl(k-S,N-Spy)(PR3)] species exists in CHCl3 solution. The aryl derivatives, X=Ar, exist exclusively as dimers (n=2) with predominantly SN bridging. The [Pt(Spy)2 (PPh3)2] complex, prepared by reacting [PtCl2 (PPh3)2] with NaSpy, dissociates in CHCl3 to [Pt(k-S,N-Spy) (Spy)(PPh3)] and PPh3 at room temperature.  相似文献   

11.
A series of gold(III) cations of the type cis-[CH3)2AuL2]+ X? where L  Ph3, PMePh2, PMe2Ph, PMe3, AsPh3, AsPh3, SbPh3, 12H2NCH2CH2NH2, 12 Ph2PCH2CH2-PPh2, 12 Ph2AsCH2CH2AsPh2, and 12o-C6H4(AsMe2)2 and X  BF4?, PF6?, ClO4?, and F3CSO3? has been prepared. In addition, the cis complexes [(CH3)(CD3)-Au(PPh3)2]F3CSO3, [(C2H5)2Au(PPh3)2]F3CSO and [(n-C4H9)2Au(PPh3)2]F3-CSO3 have been synthesized. All have been characterized by PMR, Raman and infrared spectroscopy. These [R2AuL2]X compounds yield only ethane, butane, or octane via reductive elimination, and no disproportionation is observed. The alkane eliminations have been studied in CHCl3, CH3Cl2, and CH3COCH3 solution as a function of temperature, concentration of the complex, and concentration of added ligand L. Elimination is fastest when L is bulky (PPh3 > PMePh2 > PMe2Ph > PMe3), decreases in the sequence SbPh3 > AsPh3 > PPh3, is slow with chelating ligands, is inhibited by excess ligand, and there is small anion effect as X is varied. As R is varied, the rate of elimination decreases Bu ? Et > Me. An intramolecular dissociative mechanism is proposed which involves rapid elimination of alkane from an electron deficient dialkylgold(III) complex with nonequivalent gold—carbon bonds and produces the corresponding [AuL2]X complex.  相似文献   

12.
Bis(cycloocta-1,5-diene)platinum reacts with 2,3,4,5-tetraphenylfulvene to afford the complex [Pt(η2-CH2C5Ph4)(cod)] (cod  C8H12) in which the metal atom is coordinated to the exo-cyclic double bond of the fulvene. Related compounds [Pt(η2-CH2C5Ph4L2] (L  PPh3, PMePh2, PMe2Ph, AsPh3 or CNBut have also been prepared and characterised. Reaction of the complexes [Pt(C2H4)2(L)] (L  P(cyclo-C6H11)3, PPh3 or AsPh3) with 2,3,4,5-tetraphenylfulvene yields the compounds [Pt(C2H4)(η2-CH2C5PH4)(L)]. NMR data for the new species are reported and discussed. 6,6-Diphenylfulvene reacts with [Pt(cod)2] and PPh3 (12 mol ratio) to give the complex [Pt(η2-C5H4CPh2)-(PPh3)2] in which the metal atom is bonded to carbon atoms C(2) and C(3) of the fulvene ring. This was established by an X-ray diffraction study. Crystals are monoclinic, space group P21/n, with Z  4 in a unit cell of dimensions a  13.761(4), b  21.653(13), c  17.395(6) Å, β,  104.46(2)°. The structure has been solved and refined to R  0.064 (R′  0.064) for 3139 independent diffracted intensifies measured at room temperature. The platinum atom is in a trigonal environment formed by the two ligated phosphorus atoms and the CC bond of the fulvene which is elongated to 1.52(3) Å. The c5 fulvene ring is planar, and makes an angle of 108° with the coordination plane around the platinum. In this plane the metal atom is slightly asymmetrically bonded with PtC 2.15(2) and 2.24(2) Å, and PtP 2.280(6) and 2.301(6) Å.  相似文献   

13.
The Reactivity of Dinuclear Platina‐β‐diketones with Phosphines: Diacetylplatinum(II) Complexes and Mononuclear Platina‐β‐diketones Addition of mono‐ and bidentate phosphines or of AsPh3 to the platina‐β‐diketone [Pt2{(COMe)2H}2(μ‐Cl)2] ( 1 ) followed by the addition of NaOMe at ?70 °C resulted in the formation of diacetyl platinum(II) complexes cis‐[Pt(COMe)2L2] (L = PPh3, 2a ; P(4‐FC6H4)3, 2b ; PPh2(4‐py), 2c ; PMePh2, 2d ; AsPh3, 2d ) and [Pt(COMe)2(L??L)] (L??L = dppe, 3b ; dppp, 3c ), respectively. The analogous reaction with dppm afforded the dinuclear complex cis‐[{Pt(COMe)2}2(μ‐dppm)2] ( 4 ) that reacted in boiling acetone yielding [Pt(COMe)2(dppm)] ( 3a ). The reactions 1 → 2 / 3 were found to proceed via thermally highly unstable cationic mononuclear platina‐β‐diketone intermediates [Pt{(COMe)2H}L2]+ and [Pt{(COMe)2H}(L??L)]+, respectively, that could be isolated as chlorides for L??L = dppe ( 5a ) and dppp ( 5b ). The reversibility of the deprotonation of type 5 complexes with NaOMe yielding type 3 complexes was shown by the protonation of the diacetyl complex 3b with HBF4 yielding the platina‐β‐diketone [Pt{(COMe)2H}(dppe)](BF4) ( 5c ). All compounds were fully characterized by means of NMR and IR spectroscopies, and microanalyses. X‐ray diffraction analysis was performed for the complex cis‐[Pt(COMe)2(PPh3)2]·H2O·CHCl3 ( 2a ·H2O·CHCl3).  相似文献   

14.
The platina‐β‐diketone [Pt2{(COMe)2H}2(µ‐Cl)2] ( 1 ) was found to react with monodentate phosphines to yield acetyl(chloro)platinum(II) complexes trans‐[Pt(COMe)Cl(PR3)2] (PR3 = PPh3, 2a ; P(4‐FC6H4)3, 2b ; PMePh2, 2c ; PMe2Ph, 2d ; P(n‐Bu)3, 2e ; P(o‐tol)3, 2f ; P(m‐tol)3, 2g ; P(p‐tol)3, 2h ). In the reaction with P(o‐tol)3 the methyl(carbonyl)platinum(II) complex [Pt(Me)Cl(CO){P(o‐tol)3}] ( 3a ) was found to be an intermediate. On the other hand, treating 1 with P(C6F5)3 led to the formation of [Pt(Me)Cl(CO){P(C6F5)3}] ( 3b ), even in excess of the phosphine. Phosphine ligands with a lower donor capability in complexes 2 and the arsine ligand in trans‐[Pt(COMe)Cl(AsPh3)2] ( 2i ) proved to be subject to substitution by stronger donating phosphine ligands, thus forming complexes trans‐[Pt(COMe)Cl(L)L′] (L/L′ = AsPh3/PPh3, 4a ; PPh3/P(n‐Bu)3, 4b ) and cis‐[Pt(COMe)Cl(dppe)] ( 4c ). Furthermore, in boiling benzene, complexes 2a – 2c and 2i underwent decarbonylation yielding quantitatively methyl(chloro)platinum(II) complexes trans‐[Pt(Me)Cl(L)2] (L = PPh3, 5a ; P(4‐FC6H4)3, 5b ; PMePh2, 5c ; AsPh3, 5d ). The identities of all complexes were confirmed by 1H, 13C and 31P NMR spectroscopy. Single‐crystal X‐ray diffraction analyses of 2a ·2CHCl3, 2f and 5b showed that the platinum atom is square‐planar coordinated by two phosphine ligands (PPh3, 2a ; P(o‐tol)3, 2f ; P(4F‐C6H4)3, 5b ) in mutual trans position as well as by an acetyl ligand ( 2a, 2f ) and a methyl ligand ( 5b ), respectively, trans to a chloro ligand. Single‐crystal X‐ray diffraction analysis of 3b exhibited a square‐planar platinum complex with the two π‐acceptor ligands CO and P(C6F5)3 in mutual cis position (configuration index: SP‐4‐3). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Summary The preparation, structural study and chemical behaviour of new cationic, monoanionic and dianionic tetracoordinate nickel(I) complexes of the types: [NiL4][BPh4] (L=PPh3, AsPh3 or SbPh3), [PR4][NiX2L2] (X=Cl, Br or I; L=PPh3, AsPh3 or SbPh3 and [PR4]+=PPh4, Ph3PCH2Ph or Ph3PEt) and [PR4]2[NiX3L] (X=Cl, Br or I; L=PPh3 and [PR4]+=PPh4 or PPh3CH2Ph) are described.  相似文献   

16.
Summary Upon u.v. irradiation of [Fe(CO)4(PR 3 )] with HSiR3 (HSiR3 = HSiMePh2, PR3 = PPh3; HSiR3 = HSiMe2Cl, PR3 = PPh3 or PMe2Ph; HSiR3 = HSiMeCl2, PR3 = PPh3, PMePh2, PMe2Ph or PMe3; HSiR3 = HSiCl3, PR3 = PPh3, PMePh2, PMe2Ph, PMe3 or PBu 3 n ) the corresponding hydridosilyl complexes [Fe(CO)3H(PR3)SiR3] are formed. The complexes have themer configuration with acis disposition of the hydride and the silyl ligands. Prolonged irradiation with an excess of silane results in the formation of bis-silyl complexes [Fe(CO)3(PR3)(SiR3)2], if electron density at the metal is not too high. Thus, [Fe(CO)3H(PPh3)SiMePh2] and [Fe(CO)3-H(PMe2Ph)SiMe2Cl] can be obtained but not the corresponding bis-silyl complexes. Most bis-silyl complexes are obtained asmer-isomers with acis-arrangement of the silyl ligands. Only for [Fe(CO)3(PR3)(SiCl3)2] with small phosphine ligands (PR3 = PMe3 or PMe2Ph) is thefac-isomer formed.Part VII of this series, ref. (1).  相似文献   

17.
Several isomers of the type [M2Cl5L4] (M = Ru, L = AsPh3, As(p-tol)3, As(p-PhCl)3, PEt2Ph, PMe2Ph; L2 = Ph2As(CH2)2AsPh2; M = Os, L = PPh3, AsPh3) have been synthesised by various routes and characterised by magnetic, ESR and electrochemical measurements, and for [(PEt2Ph)Cl2RuCl3Ru(PEt2Ph)3] by X-ray structural analysis.  相似文献   

18.
Direct reduction of WCl6 with PMe3 in toluene at 120°C in a sealed tube affords the complexes [WCl4(PMe3)x] (x = 2, 3). [WCl4(PMe3)3] abstracts oxygen from equimolar amounts of water in wet acetone or tetrahydrofuran to give [WOCl2(PMe3)3] in very high yields. This procedure has been successfully applied to the high yield synthesis of other known oxotungsten(IV) complexes, [WOCl2(PR3)3] (PR3 = PMe2Ph and PMePh2). Metathesis reactions of [WOCl2(PMe3)3] with NaX give [WOX2(PMe3)3] (X = NCO, NCS) and [WOX2(PMe3)] (X = Me2NCS2). The synthesis of the trimethylphosphite analogue, [WOCl2(P(OMe)3)3], is also described and the structures of the new complexes assigned on the basis of IR and 1H and 31P NMR spectroscopy.  相似文献   

19.
Methyl- or phenylN-carboxamido-complexes of platinum(II) Pt(NHCOR')RL2 (L = PEt3, R = Me, R′ = Me, CH = CH2; L = PEt3, R = Ph, R′ = Me; L = PMe2Ph, R = Ph, R′ = Me, Ph; L = PMePh2, R = Ph, R′ =3, R = Ph, R′ = Me) have been prepared by the reaction of KOH with cationic nitrile complexes [PtR(NCR′)L2]BF4. Thermally unstable hydrido-N-carboxamido-complexes could be detected spectroscopically. IR and NMR (1H, 31P) spectra of some of the complexes indicate the existence of a solvent- and temperature-dependent equilibrium between syn-and anti-isomers arising from restricted rotation about the NC bond of the carboxamido-group. The anti-isomer is favoured by nonpolar solvents and by increasing bulk of L. In the complex [PtH(NCCH CH2)(PEt3)2]BF4, IR and NMR spectra show acrlonitrile to be bound through nitrogen, not through the olefinic CC bond.  相似文献   

20.
Cationic palladium(II) and platinum(II) complexes with chelate ylides and neutral ligands of the type, [MCl (Y) (L)]+BPh4? (M  Pd or Pt; Y  bdep or bdmp*; L = 4-methylpyridine, 3,5-dimethylpyrazole, PPh3, PCy3, PMePh2, P(OMe)3, AsPh3 or SbPh3) and [M(bdep) (4-methylpyridine)2] (BPh4)2 (M = Pd or Pt) were prepared and characterized by means of infrared and 1H NMR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号