首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a technique that consists in ionizing atoms out of the 5P 1/2 fragments originated in the cold collision process, we have measured the contribution of the fine structure changing collision (FS) to the total trap loss rate of cold 85Rb. Our results show that FS contribution is responsible for about 4% of the total trap loss. This result should stimulate new theoretical discussions involving exoergic cold collisions. Received 26 October 1998 and Received in final form 2 February 1999  相似文献   

2.
We report on the formation of translationally cold Cs2 ground state molecules through photoassociation in the 1u attractive molecular state below the 6 s 1/2 +6 p 3/2 dissociation limit. The cold molecules are obtained after spontaneous decay of photoassociated molecules in a MOT and in a dark SPOT. We also used polarized atoms, in the f =3, m f =+3Zeeman ground state. Purely asymptotic and adiabatic calculations including hyperfine interaction and rotation are in excellent agreement with observed structures. As expected, the 1u state is actually a pure long-range state, consisting of paired atoms, uniquely linked by the first terms of the multipole expansion of the electrostatic interaction. A temperature of 20 K has been measured for the molecular cloud. Received 19 July 1999  相似文献   

3.
The displacement of Rb atoms in a magneto-optical trap (MOT) caused by the force of a finite time series of counter-propagating frequency modulated light pulse pairs is measured as a function of the chirp of the pulses. The frequency modulated light pulses induced 85Rb 52S1/2 F=3 ↔ 85Rb 52P3/2 F'=2, 3, 4 excitation and de-excitation of the atoms. The result of this excitation de-excitation process is a force causing the acceleration and, consequently, the displacement of the maximum of the spatial distribution of the trap atoms. The time dependence of the populations of the levels of the atom are calculated — including also the 85Rb 52S1/2 F=2 and F'=1 states — as the result of the interaction with the finite train of counter propagating frequency modulated light pulses by the solution of the Bloch equations. As the result of the measurement the interval of the chirp of the frequency modulated light of given intensity where the transitions take place, are determined. The results of the experiment and the expectation on the basis of model calculations are in qualitative agreement.  相似文献   

4.
We report a comparative investigation of trap loss rates in a magneto-optical trap for two potassium isotopes, 39K and 40K, as a function of trap light intensity. The isotopes present a quite similar behavior for the loss rates at high intensities, and a sudden increase of the loss rates at low intensities is present in both cases. While for 39K such increase can be explained assuming that the major contribution to the losses comes from hyperfine changing collisions, a different loss mechanism must be considered for 40K, which has an inverted ground state hyperfine structure. The experimental results of both isotopes are well reproduced by an alternative model based on radiative escape as the dominant loss mechanism. Received 1st May 2002 / Received in final form 19 October 2002 Published online 4 March 2003 RID="a" ID="a"Alternative address: Dipartimento di Fisica, Universitá di Trento, 38050 Povo (Tn), Italy. RID="b" ID="b"e-mail: marcassa@if.sc.usp.br  相似文献   

5.
Ultracold molecules have been produced by photoassociation of Cs atoms trapped in a mirror magneto-optical trap. The molecules were detected by resonantly enhanced multi-photon ionization followed by time-of-flight mass spectroscopy. The time-of-flight ofatomic and molecular ions was investigated in the presence of a dc bias voltageapplied to the conducting mirror. This technique provides a new tool for determining the distance between the cold molecules and the mirror surface. This revised version was published online in August 2005 with a corrected cover date.  相似文献   

6.
Spectroscopic experiments in static or dynamic ion traps have produced results of extremely high precision. They have been, however, performed mainly on systems with simple electronic level schemes as available in singly charged ions of the earth-alkaline elements. In this contribution the most complex system investigated so far, Eu+, is used as example to discuss the possibility of spectroscopy on superheavy elements in traps.  相似文献   

7.
We report on the first successful loading of a magneto-optical trap (MOT) with metastable He atoms from a Stark-slower. Thereby, deceleration of the atoms relies on laser-atom interaction in an inhomogeneous electric field. We show that the results obtained are comparable with early results from other groups achieved with a Zeeman slower. The Stark slower, which is able to fully control the final velocity of the atomic He beam, is the first step in achieving complete spin independent kinematic control based solely on electric fields. Received 2 October 2002 / Received in final form 20 January 2003 Published online 29 April 2003 RID="a" ID="a"e-mail: eichmann@mbi-berlin.de  相似文献   

8.
We propose a new possibility to form ultracold molecules, via photoassociation of a pair of cold atoms into vibrational levels of the external well of an excited electronic state located at intermediate interatomic distance ( ≈ 20 Bohr radii), and embedded in the dissociation continuum above its dissociation limit. The existence of such a well is demonstrated by conventional free-free absorption spectroscopy at thermal energies. Estimation for cold atom photoassociation and cold molecule formation rates are obtained within a perturbative approach [Drag et al., IEEE J. Quant. Electr. 36, 1378 (2000)], and are found observable for usual conditions of photoassociation experiments. Received 1st March 2001  相似文献   

9.
A general scheme for reducing the center-of-mass entropy is proposed. It is based on the repetition of a cycle, composed of three concepts: velocity selection, deceleration and irreversible accumulation. Well-known laser techniques are used to represent these concepts: Raman π-pulse for velocity selection, STIRAP for deceleration, and a single spontaneous emission for irreversible accumulation. No closed pumping cycle nor repeated spontaneous emissions are required, so the scheme is applicable to cool a molecular gas. The quantum dynamics are analytically modelled using the density matrix. It is shown that during the coherent processes the gas is translationally cooled. The internal states serve as an entropy sink, in addition to spontaneous emission. This scheme provides new possibilities to translationally laser-cool molecules for high precision molecular spectroscopy and interferometry. Received 25 June 2002 / Received in final form 28 September 2002 Published online 12 November 2002 RID="a" ID="a"e-mail: ooi@spock.physik.uni-konstanz.de RID="b" ID="b"e-mail: Peter.Marzlin@uni-konstanz.de RID="c" ID="c"e-mail: Juergen.Audretsch@uni-konstanz.de  相似文献   

10.
We present the results of two experiments where cold cesium atoms are trapped in a speckle field. In the first experiment, a YAG laser creates the speckle pattern and induces a far-detuned dipole potential which is a nearly-conservative potential. Localization of atoms near the intensity maxima of the speckle field is observed. In a second experiment we use two counterpropagating laser beams tuned close to a resonance line of cesium and in the linlin configuration, one of them being modulated by a holographic diffuser that creates the speckle field. Three-dimensional cooling is observed. Variations of the temperature and of the spatial diffusion coefficient with the size of a speckle grain are presented. Received 16 December 1998 and Received in final form 16 April 1999  相似文献   

11.
We present an experimental study of the kinetic temperature of cesium atoms interacting with laser beams tuned on the blue side of the transition. In the case of a three-dimensional four-beam molasses, temperatures as low as 800 nK were found. These low temperatures are compatible with a good capture efficiency. The influence of other hyperfine transitions on the temperature is significant. In the presence of a static magnetic field (antidot lattices), the temperatures are slightly higher but show a much weaker dependence on the other hyperfine transitions. Received: 14 May 1998 / Received in final form: 16 October 1998 / Accepted: 2 November 1998  相似文献   

12.
We present a semi-classical theory of the light pressure force for atoms interacting with a two-dimensional laser field. Unlike previous 2D theory, ours is valid for general atomic level and laser field configurations. We show that striking new features appear in the velocity-dependent force arising from the multi-dimensionality. Finally, we describe in detail the novel numerical technique used in the calculation. Received 4 December 1998 and Received in final form 13 February 1999  相似文献   

13.
Over the past three years we have developed the technique of buffer-gas cooling and loading of atoms and molecules into magnetic traps. Buffer-gas cooling relies solely on elastic collisions (thermalization) of the species-to-be-trapped with a cryogenically cooled helium gas and so is independent of any particular energy level pattern. This makes the cooling technique general and potentially applicable to any species trappable at the temperature of the buffer gas (as low as 240 mK). Using buffer-gas loading, paramagnetic atoms (europium and chromium) as well as a molecule (calcium monohydride) were trapped at temperatures around 300 mK. The numbers of the trapped atoms and molecules were respectively about 1012 and 108. The atoms and molecules were produced by laser ablation of suitable solid precursors. In conjunction with evaporative cooling, buffer-gas loaded magnetic traps offer the means to further lower the temperature and increase the density of the trapped ensemble to study a large variety of both static (spectra) and dynamic (collisional cross-sections) properties of many atoms and molecules at ultra-low temperatures. In this article we survey our main results obtained on Cr, Eu, and CaH and outline prospects for future work. Received 2 November 1998 and Received in final form 19 February 1999  相似文献   

14.
We present a direct measurement of velocity distributions in two dimensions by using an absorption imaging technique in a 3D near resonant optical lattice. The results show a clear difference in the velocity distributions for the different directions. The experimental results are compared with a numerical 3D semi-classical Monte-Carlo simulation. The numerical simulations are in good qualitative agreement with the experimental results. Received 3 September 2002 / Received in final form 25 October 2002 Published online 11 February 2003  相似文献   

15.
We report the observation of resonances in the intensity correlation spectra of a 3D rubidium optical lattice, which we attribute to light scattering from propagating atomic density fluctuations in the lattice. This process is the spontaneous analog of the stimulated scattering mechanism recently described by Courtois et al.. We investigate the dependence of the new resonances on the lattice angle and show that they disappear for large angles, thus resolving previous discrepancies on the subject. Received: 30 January 1997 / Accepted: 9 October 1997  相似文献   

16.
We present an experimental and theoretical investigation of the weak probe amplification in a cold and optically thick atomic cloud that is highly driven by a strong pump laser. We find that for high optical densities the probe amplification is strongly saturated. We compare our saturation measurements with a model based on dressed-atom population equalization due to re-scattering of spontaneous emission. Good agreement between theory and experiment is obtained only when corrections due to multiple scattering are included. Received 3 November 1998 and Received in final form 5 March 1999  相似文献   

17.
We report the detailed analysis of translationally cold rubidium molecule formation through photoassociation. Cold molecules are formed after spontaneous decay of photoexcited molecules from a laser cooled atomic sample, and are detected by selective mass spectroscopy after two-photon ionization into Rb 2 + ions. A spectroscopic study of the 0 g - (5 S + 5 P 3/2 ) pure long-range state of 87Rb2 is performed by detecting the ion yield as a function of the photoassociation laser frequency; the spectral data are theoretically analyzed within the semiclassical RKR approach. Molecular ionization is resonantly enhanced through either the 2 3 Π g or the 2 3 Σ + g intermediate molecular states. Some vibrational levels of the latter electronic state are observed and assigned here for the first time. Finally, cold molecules formation rates are calculated and compared to the experimentally measured ones, and the vibrational distribution of the formed molecules in the a 3 Σ + u ground triplet state is discussed. Received 18 January 2001 and Received in final form 10 April 2001  相似文献   

18.
The measurements of fine-structure changing collisions in a cesium magneto-optical trap, reported in a previous work [A. Fioretti et al., Phys. Rev. A 55, R3999 (1997)], are reanalyzed within a model based on the flux enhancement effect, which takes place in cold atomic collisions. In the present analysis, we consider the cooperative effect of the long-range and the shorter-range excitation by the strong trap laser. We evidence also the important role of the hyperfine structure of the Cs2 molecular levels asymptotically connected to the ground-state and excited-state dissociation limits. Received 22 July 1999 and Received in final form 4 May 2000  相似文献   

19.
The experiments reported here show that the dipole-dipole interaction, the fundamental interaction between the cold Rydberg atoms, is the dominant initial ionization mechanism for evolution from a frozen Rydberg gas into a plasma. The study also indicates that plasma formation follows a path of initial ionization, redistribution of Rydberg population to higher angular momentum states, and rapid avalanche ionization due to electron-Rydberg collisions.  相似文献   

20.
The spatial displacement of the 85Rb atoms in a Magneto-Optical Trap (MOT) under the influence of series of frequency modulated light pulse pairs propagating opposite to each other is measured as a function of the time elapsed after the start of the pulse train, and compared with the results of simulations. Adiabatic excitation and consecutive de-excitation take place between the ground 52S1/2 (F=3) and the 52P3/2 (F'=2, 3, 4) excited levels as the result of the interaction. The displacement of the 85Rb atoms is calculated as the solution of simple equation of motion where the expelling force is that arising from the action of the frequency modulated light pulses. The restoring and friction forces of the MOT are taken into account also. The system of Bloch equations for the density matrix elements is solved numerically for transitions between six working hyperfine levels of the atom interacting with the sequence of the frequency modulated laser pulses. According to these simulations, the momentum transferred by one pulse pair is always smaller than the expected 2ħk, (1) where ħ is the Plank constant and k=2π/λ where λ is the wavelength, (2) having a maximum value in a restricted region of variation of the laser pulse peak intensity and the chirp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号