首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In this report we have studied micellization process of anionic, cationic and non-ionic surfactants using N,N-dimethylaminonapthyl-(acrylo)-nitrile (DMANAN) as an external fluorescence probe. Micropolarity, microviscosity, critical micellar concentration of these micelles based on steady state absorption and fluorescence and time resolved emission spectroscopy of the probe DMANAN show that the molecule resides in the micelle-water interface for ionic micelles and in the core for the non-ionic micelle. The effect of variation of pH of the micellar solution as well as fluorescence quenching measurements of DMANAN provide further support for the location of the probe in the micelles.  相似文献   

2.
The knowledge of the formation of bile acid micellar aggregates is of great importance because of the biological significance of these compounds and their pharmacological applications. The intramolecular charge transfer (ICT) fluorescence property of trans-ethyl-p-(dimethylamino) cinnamate is used to study the micelles formed by aggregation of three most important bile acids, viz. cholic acid, deoxycholic acid and chenodeoxycholic acid by steady state and picosecond time-resolved fluorescence spectroscopy. The ICT fluorescence band intensity was found to increase with concomitant blue shift with the addition of bile acids. The blue shift in ICT fluorescence maxima as well as decrease in nonradiative decay constants in presence of bile acids indicate the passage of the probe towards the micro domains formed from the aggregated bile acids. Binding constant of the probe with micelles as well as critical micelle concentration and average polarity parameter of the micellar environments were obtained from the variation of fluorescence intensity on increasing concentration of bile acids in the medium.  相似文献   

3.
《Acta Physico》2007,23(9):1337-1341
Absorption and excited state intramolecular proton transfer (ESIPT) fluorescence of 2′-ethylhexyl salicylate (EHS) were examined in the presence of cationic, non-ionic, and anionic surfactants. It was found that linear EHS molecule was solubilized in micelles with its flexible and hydrophobic 2′-ethylhexyl chain toward the micellar core and with its rigid salicyl moiety toward the micelle-water interface. The UV absorption of EHS was improved and the intramolecular hydrogen bonding formation of EHS was favored, resulting in greatly enhanced ESIPT fluorescence. The excited EHS molecules decay via visible luminescence and non-radiative deactivation. The binding sites of EHS in micelles were explained at a molecular level in terms of molecular structures and sizes of EHS and surfactants. Dynamic fluorescence quenching and spectral measurements of ester hydrolysis of EHS provide further evidences for the binding sites of EHS in different micelles.  相似文献   

4.
Photophysical properties of 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine (AODIQ) have been studied in different aqueous micellar environments using steady-state and time-resolved emission spectroscopy. The charge transfer (CT) fluorescence exhibits appreciable hypsochromic shift, along with an enhancement in the fluorescence intensity in all the micellar media. This is associated with an increase in the fluorescence anisotropy (r), which suggests that the fluorophore molecule experiences motionally restricted environments upon binding with the micelles. Fluorescence spectral position and fluorescence quenching studies suggest that the fluorescing moiety does not penetrate into the core of the micellar units; rather it binds at the micelle-water interfacial region. The binding constant and free energy change during probe-micelle binding have been evaluated from relevant fluorescence data. Light has been thrown on the mode of action of urea on micelle bound probes. The results are interpreted in terms of the model that urea displaces water molecules from the micellar interface and the consequent destabilization leads to the expulsion of the probe molecules from the interfacial region. Polarity and viscosity of the microenvironments around the probe have been determined in the micellar systems.  相似文献   

5.
考察了阳离子、非离子和阴离子表面活性剂存在下水杨酸-2’-乙基己基酯(EHS)的吸收光谱和激发态分子内质子转移(ESIPT)荧光光谱. 结果表明, EHS可增溶在胶束中, 2’-乙基己基碳链朝向胶束内核, 而水杨酸基朝向胶束-水界面; 胶束环境有利于EHS分子对紫外光的吸收和分子内氢键的形成, 从而使ESIPT 荧光显著增强, 激发态分子以发射可见光和非辐射去活化方式衰减; 并根据EHS和表面活性剂分子的结构和大小, 解释了EHS分子在胶束中的结合位点, 荧光猝灭和酯水解的光谱测量进一步为此结合位点提供了佐证.  相似文献   

6.
考察了阳离子、非离子和阴离子表面活性剂存在下水杨酸-2′-乙基己基酯(EHS)的吸收光谱和激发态分子内质子转移(ESIPT)荧光光谱.结果表明,EHS可增溶在胶束中,2′-乙基己基碳链朝向胶束内核,而水杨酸基朝向胶束-水界面;胶柬环境有利于EHS分子对紫外光的吸收和分子内氢键的形成,从而使ESIPT荧光显著增强,激发态分子以发射可见光和非辐射去活化方式衰减;并根据EHS和表面活性剂分子的结构和大小,解释了EHS分子在胶束中的结合位点,荧光猝灭和酯水解的光谱测量进一步为此结合位点提供了佐证.  相似文献   

7.
The behavior of the triphenylmethane dye crystal violet in aqueous solutions containing polyoxyethylene nonionic surfactants was investigated using absorption and fluorescence spectroscopic techniques. The interactions of the dye were examined in micellar media in order to prevent dye aggregation and to ensure maximum dye and surfactant interaction. The relative fluorescence enhancements and the binding constants of the dye to the surfactant micelles were determined. The micropolarities of the micellar environment sensed by the pyrene probe were estimated from the I 1/I 3 intensity ratios of the fluorescence spectra of pyrene. The fluorescence quenching of pyrene by hexadecylpyridinium chloride was investigated in aqueous surfactant mixtures at a fixed concentration of surfactant in order to determine the aggregation numbers. Attempts were made to correlate the binding constants obtained in this investigation to various micellar parameters.  相似文献   

8.
反胶束是两亲分子在非极性溶剂中形成的一种有序组合体,在医药、化工、采油、胶束催化及酶催化等领域中有重要应用.与胶束溶液相比,人们对反胶束的形成与结构的了解至今仍不充分.特别是对于由混合表面活性剂形成的反胶束的研究几乎无人涉及.本文采用动态光散射、电导及荧光光谱等手段对阴离子表面活性剂AOT与非离子表面活性剂形成的混合反胶束进行了研究,旨在探讨利用表面活性剂的复配来调节和控制反胶束的结构和性能.亚实验部分二异辛基磺化琉璃酸钠(AOT,Sigma公司);Brij30为含4个氧乙烯基(EO基)的十二碳醇(AcrosOrgani…  相似文献   

9.
Interaction and stability of binary mixtures of cationic surfactants hexadecyltrimethylammonium bromide (HTAB) or hexadecylpyridinium bromide (HPyBr) with nonionic surfactant decanoyl-N-methyl-glucamide (Mega-10) have been studied at different mole fraction of cationic surfactants by using interfacial tension measurements and fluorescence probe techniques. From interfacial tension measurements, the critical micellar concentration and various interfacial thermodynamic parameters have been evaluated. The experimental cmc's were analyzed with the pseudophase separation model, the regular solution theory, and the Maeda's approach. These approaches allowed us to determine the interaction parameter and composition in the mixed state. By using the static quenching method, the mean micellar aggregation numbers of pure and mixed micelles of HTAB + Mega-10 were obtained. It has been observed that the aggregation number of mixed micelles deviates negatively from the ideal behavior. The micropolarity of the micelle was monitored with pyrene fluorescence intensity ratio and found to be increase with the increase of ionic content. The polarization of fluorescence probe Rhodamine B was monitored at different mole fraction of cationic surfactants.  相似文献   

10.
Photoinduced intramolecular charge transfer (ICT) of p-N,N-dimethylaminobenzoic acid (DMABOA) in AOT/cyclohexane/H2O reverse micelle was investigated and compared with that in CTAB/1-heptanol/H2O reverse micelle. It is proposed that the DMABOA molecule exists at the AOT reverse micelle water pool interface with its carboxylic group heading toward the water pool while the dimethylaminophenyl moiety buried in the micellar phase. Dual fluorescence of DMABOA that is indicative of the ICT reaction in the excited state was observed over the investigated water pool size, W of 3-17, in the AOT reverse micelle. The ICT emission of DMABOA in the AOT reverse micelle-water pool interface was found to be much weaker than that in the CTAB reverse micelle-water pool interface, and was attributed to the parallel direction of the electric field at the AOT reverse micelle-water pool interface to the charge transfer.  相似文献   

11.
A steady-state and time-resolved photophysical study of a cationic phenazinium dye, phenosafranin (PSF), has been investigated in well-characterized biomimetic micellar nanocavities formed by anionic surfactants of varying chain lengths, namely, sodium decyl sulfate (S(10)S), sodium dodecyl sulfate (S(12)S), and sodium tetradecyl sulfate (S(14)S). In all these micellar environments, the charge transfer fluorescence of PSF shows a large hypsochromic shift along with an enhancement in the fluorescence quantum yield as compared to that in aqueous medium. A reduction in the nonradiative deactivation rate within the hydrophobic interior of micelles led to an increase in the fluorescence yield and lifetime. The present work shows the degree of accessibility of the fluorophore toward the ionic quencher in the presence of surfactants of different surfactant chain lengths. The fluorometric and fluorescence quenching studies suggest that the fluorophore resides at the micelle-water interfacial region. The enhancements in the fluorescence anisotropy and rotational relaxation time of the probe in all the micellar environments from the pure aqueous solution suggest that the fluorophore binds in motionally restricted regions introduced by the micelles. Polarity and viscosity of the microenvironments around the probe in the micellar systems have been determined. The work has paid proper attention to the hydrophobic effect of the surfactant chain length on photophysical observations.  相似文献   

12.
The dynamics of the excited-state intramolecular proton-transfer (ESIPT) reaction of 2-(2'-furyl)-3-hydroxychromone (FHC) was studied in micelles by time-resolved fluorescence. The proton-transfer dynamics of FHC was found to be sensitive to the hydration and charge of the micelles, demonstrated through a decrease of the ESIPT rate constant (k(PT)) in the sequence cationic → nonionic → anionic micelles. A remarkably slow ESIPT with a time constant (τ(PT)) of ~100 ps was observed in the anionic sodium dodecyl sulfate and sodium tetradecyl sulfate micelles, whereas it was quite fast (τ(PT) ≈ 15 ps) in the cationic cetyltrimethylammonium bromide and tetradecyltrimethylammonium bromide micelles. In the nonionic micelles of Brij-78, Brij-58, Tween-80, and Tween-20, ESIPT occurred with time constants (τ(PT) ≈ 35-65 ps) intermediate between those of the cationic and anionic micelles. The slower ESIPT dynamics in the anionic micelles than the cationic micelles is attributed to a relatively stronger hydration of the negatively charged headgroups of the former than the positively charged headgroups of the latter, which significantly weakens the intramolecular hydrogen bond of FHC in the Stern layer of the anionic micelles compared to the latter. In addition, electrostatic attraction between the positively charged -N(CH(3))(3)(+) headgroups and the negatively charged 4-carbonyl moiety of FHC effectively screens the intramolecular hydrogen bond from the perturbation of water molecules in the micelle-water interface of the cationic micelles, whereas in the anionic micelles, this screening of the intramolecular hydrogen bond is much less efficient due to an electrostatic repulsion between its negatively charged -OSO(3)(-) headgroups and the 4-carbonyl moiety. As for the nonionic micelles, a moderate level of hydration, and the absence of any charged headgroups, causes an ESIPT dynamics faster than that of the anionic but slower than that of the cationic micelles. Furthermore, the ESIPT rate decreased with a decrease of the hydrophobic chain length of the surfactants due to the stronger hydration of the micelles of shorter chain surfactants than those of longer chain surfactants, arising from a less compact packing of the former surfactants compared to the latter surfactants.  相似文献   

13.
Abstract— A previous study on the electronic spectroscopy of p -N,N-dialkylaminobenzylidenemalononitrile, 1, has been extended to a larger variety of organic solvents and to micelles of ionic and nonionic surfactants. By comparing the fluorescence emission (λF and φ) of 1 in micelles and in homogeneous organic solvents, the effective polarity and the microviscosity of the micellar environments of potassium dodecanoate, sodium dodecyl sulfate, cetyltrimethylammonium bromide and Triton X-100 micelles have been determined to be 40, 40, 36 and 28, respectively and 23, 31, 34 and 28 cP, respectively. These results indicate that the fluorescence probe is located in the micelle–water interface of a micelle and this region of a micelle is polar and viscous. 1 has also been studied in different surfactants with varying surfactant concentrations. The φ of 1, a microviscosity gauge for micellar aggregates, remains unchanged at the critical micelle concentrations of various surfactants, but decreases at much lower surfactant concentrations. This is attributable to the formation of premicellar aggregates of surfactant molecules below their critical micelle concentrations.  相似文献   

14.
Mixed micelles of solubilized dimyristoyl phosphatidylcholine (DMPC) and the zwitterionic detergent dodecyldimethylammoniopropane sulfonate are characterized employing time-resolved fluorescence quenching (TRFQ), electron spin resonance (ESR), and surface tensiometry toward the goal of investigating interfacial reactions using these micelles as host reaction media. The properties measured are the micelle aggregation numbers, interfacial hydration index, microviscosity, and the critical micelle concentrations for various molar fractions, XDMPC, of DMPC, 0相似文献   

15.
The anionic dye 8-anilino-1-napthalensulfonic acid ammonium salt, or ANS, was used as a fluorescent probe to investigate the behaviour of dye-surfactant interactions in aqueous solutions of Triton X-100 and the Brij and polyoxyethylene tridecyl ether (POE TDE) series of polyoxyethylene non-ionic surfactants. The fluorescence behaviour of the dye with the non-ionic surfactants was examined in micellar media. The concentration of surfactant was kept well above the cmc to investigate the interaction of the dye with surfactant micelles. In this investigation, the relative fluorescence enhancements, binding constants of the dye to the surfactant micelles and aggregation numbers of the micelles were determined, from the analysis of spectroscopic data.  相似文献   

16.
The primary objective of the present study is to understand how the different nonionic surfactants modify the anisotropic interface of cationic water-in-oil (W/O) microemulsions and thus influences the catalytic efficiency of surface-active enzymes. Activity of Chromobacterium viscosum lipase (CV-lipase) was estimated in several mixed reverse micelles prepared from CTAB and four different nonionic surfactants, Brij-30, Brij-92, Tween-20, and Tween-80/water/isooctane/n-hexanol at different z ([cosurfactant]/[surfactants]) values, pH 6 (20 mM phosphate), 25 degrees C across a varying range of W0 ([water]/[surfactants]) using p-nitrophenyl-n-octanoate as the substrate. Lipase activity in mixed reverse micelles improved maximum up to approximately 200% with increasing content of non-ionic surfactants compared to that in CTAB probably due to the reduced positive charge density as well as plummeted n-hexanol (competitive inhibitor of lipase) content at the interfacial region of cationic W/O microemulsions. The highest activity of lipase was observed in CTAB (10 mM) + Brij-30 (40 mM)/isooctane/n-hexanol)/water system, k2 = 913 +/- 5 cm3 g-1 s-1. Interestingly, this observed activity is even higher than that obtained in sodium bis (2-ethyl-1-hexyl) sulfosuccinate (AOT)/n-heptane reverse micelles, the most popular W/O microemulsion in micellar enzymology. To ascertain the influence of non-ionic surfactants in improving the activity of surface-active enzymes is not limited to lipase only, we have also investigated the catalytic activity of Horseradish peroxidase (HRP) in different mixed W/O microemulsions. Here also following the similar trend as observed for lipase, HRP activity enhanced up to 2.5 fold with increasing concentration of nonionic surfactants. Finally, the enzyme activity was correlated with the change in the microenvironment of mixed reverse micelles by steady-state fluorescence study using 8-anilino-1-napthalenesulphonic acid (ANS) as probe.  相似文献   

17.
The micellar effect of surfactants of various types on the rate of the reaction between methyl violet and hydroxide ion is studied. The absorption spectra show that the cation of methyl violet is bound by micelles of all types at proper concentrations of surfactants. The observed rate constant in micellar systems containing nonionic Brij-35, zwitterionic 3-(dimethyldodecylammonio)-propanesulfonate, cationic cetyltrimethylammonium bromide and hydroxide surfactants is higher, whereas in solutions of the anionic surfactant sodium dodecylsulfate is lower than that one in the surfactant-free system. Piszkiewicz's, Berezin's, and pseudophase ion-exchange models of the kinetic micellar effect are used for the treatment of the dependences of the above-mentioned constants on the surfactant concentration. The values of the corresponding kinetic parameters are compared and discussed. The influence of nonionic, zwitterionic, and anionic micelles on the reaction rate is discussed on the basis of medium and concentration kinetic effects. The character of the cationic micelles effect is somewhat paradoxical. Although the observed pseudo–first-order reaction rate constant substantially increases in the presence of such micelles, the second order-rate constant in these micelles is lower than the corresponding value in surfactant-free aqueous solution. As a possible explanation, the decrease in the reactivity of the HO ions is proposed, owing to their electrostatic association with the cationic headgroups (“diverting effect”).  相似文献   

18.
The effects of nonionic surfactants OP-10 and OP-30 (polyoxyethylated octyl phenols with 10 and 30 oxyethylene groups, respectively) in surfactant mixtures with ionic surfactants hexadecyltrimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) have been investigated by a conductometric method in conjunction with fluorescence, surface tension, zeta potential, and DLS measurements. The interactions are found to be antagonistic in nature for each of the systems; i.e., micellization of CTAB as well as SDS is hindered on addition of the nonionic surfactants. The antagonism is found to be more prominent in the presence of OP-10 compared to that of OP-30. Two types of mechanistic paths, path A operating below the critical micellar concentration and path B operating beyond the critical micellar concentration of nonionic surfactants, have been suggested. In path A, the retardation in micellization has been attributed to a decrease in monomeric concentration of the ionic surfactants from solution as a result of the formation of a hydrophobic complex between nonionic and ionic surfactants. In path B, the decrease in monomer concentration is due to the solubilization of the ionic surfactant in micelles of the nonionic surfactants in a 1:1 stoichiometric ratio. A theoretical treatment to the interaction in each ionic-nonionic pair yields a positive value of the interaction parameter supporting the concept of antagonism. The formation of the hydrophobic complex is supported by fluorescence and surface tension measurements. A schematic representation of the stabilization of these hydrophobic complexes has been suggested. The association of ionic surfactants by nonionic micelles is suggested by zeta potential and DLS studies.  相似文献   

19.
Importance of micellar kinetics in relation to technological processes   总被引:5,自引:0,他引:5  
The association of many classes of surface-active molecules into micellar aggregates is a well-known phenomenon. Micelles are in dynamic equilibrium, constantly disintegrating and reforming. This relaxation process is characterized by the slow micellar relaxation time constant, tau(2), which is directly related to the micellar stability. Theories of the kinetics of micelle formation and disintegration have been discussed to identify the gaps in our complete understanding of this kinetic process. The micellar stability of sodium dodecyl sulfate micelles has been shown to significantly influence technological processes involving a rapid increase in interfacial area, such as foaming, wetting, emulsification, solubilization, and detergency. First, the available monomers adsorb onto the freshly created interface. Then, additional monomers must be provided by the breakup of micelles. Especially when the free monomer concentration is low, which is the case for many nonionic surfactant solutions, the micellar breakup time is a rate-limiting step in the supply of monomers. The Center for Surface Science & Engineering at the University of Florida has developed methods using stopped flow and pressure jump with optical detection to determine the slow relaxation time of micelles of nonionic surfactants. The results showed that the ionic surfactants such as SDS exhibit slow relaxation times in the range from milliseconds to seconds, whereas nonionic surfactants exhibit slow relaxation times in the range from seconds (for Triton X-100) to minutes (for polyoxyethylene alkyl ethers). The slow relaxation times are much longer for nonionic surfactants than for ionic surfactants, because of the absence of ionic repulsion between the head groups. The observed relaxation times showed a direct correlation with dynamic surface tension and foaming experiments. In conclusion, relaxation time data of surfactant solutions correlate with the dynamic properties of the micellar solutions. Moreover, the results suggest that appropriate micelles with specific stability or tau(2) can be designed by controlling the surfactant structure, concentration, and physicochemical conditions (e.g., salt concentration, temperature, and pressure). One can also tailor micelles by mixing anionic/cationic or ionic/nonionic surfactants for a desired stability to control various technological processes.  相似文献   

20.
A halide-sensitive fluorescence probe was utilized to evaluate the miscibility of fluorocarbon and hydrocarbon surfactants in aqueous micellar systems. The fluorescence of 6-methoxy-N-1,1,2,2-tetrahydroheptadecafluorodecylquinolinium chloride, FC10MQ, was quenched by halide ions dissociated from the surfactant. The fluorescence in micellar solutions showed an initially rapid decay. This suggests that halide ions effectively quench FC10MQ fluorescence at the micellar surface. The subsequent slow decay corresponds to the quenching of FC10MQ fluorescence in the aqueous bulk phase by the free counterions. The Stern-Volmer plots for fluorescence quenching gave a distinct break at the critical micelle concentration of the cationic surfactants. The abrupt increase in fluorescence quenching is attributed to the solubilization of the probe in the micelles. The fluorescence quenching behavior provides direct information about the immiscibility of fluorocarbon and hydrocarbon species in micelles, and the results indicate that almost pure fluorocarbon micelles appear in surfactants mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号