首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the immobilization of gold nanorods onto self-assembled monolayers (SAMs) of 16-mercaptohexadecanoic acid (16-MHA). The simple two step protocol involves formation of a SAM of 16-MHA molecules onto gold-coated glass slides and subsequent immersion of these slides into the gold nanorod solution. The nanorods, formed by a seed-mediated, surfactant-assisted synthesis protocol, are stabilized in solution due to surface modification by the surfactant cetyltrimethylammonium bromide (CTAB). Attractive electrostatic interactions between the carboxylic acid group on the SAM and the positively charged CTAB molecules are likely responsible for the nanorod immobilization. UV-vis spectroscopy has been used to follow the kinetics of the nanorod immobilization. The nature of interaction between the gold nanorods and the 16-MHA SAM has been probed by Fourier transform infrared spectroscopy (FTIR). The surface morphology of the immobilized rods is studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements. SEM was also used to determine the density of the immobilized nanorods as a function of the pH of immobilization. Control over the surface coverage of the immobilized gold nanorods has been demonstrated by simple pH variation. Such well-dispersed immobilized gold nanorods with control over the surface coverage could be interesting substrates for applications such as surface-enhanced Raman spectroscopy (SERS).  相似文献   

2.
This work presents an original and straightforward technique for antibody immobilization onto a surface, keeping the antibody in a biologically reactive configuration. Self-assembly of molecular monolayers and plasma-based colloidal lithography were combined to create chemical nanopatterns on the surface of a biosensing device. This technique was employed to create an array of 100 nm wide motifs having a hexagonal 2-D crystalline structure, characterized by COOH-terminated nanospots in a CH3-terminated matrix. The quality control of the chemical nanopattern was carried out by combining atomic force microscopy, ellipsometry, and contact angle measurements. Enzyme-linked immunosorbent assay experiments were set up showing that the COOH/CH3 nanopatterned surface constrains the immobilization of the antibodies in a biologically reactive configuration, thus significantly improving the device performances as compared to those of more conventional nonpatterned COOH-terminated or CH3-terminated surfaces.  相似文献   

3.
Mass-selected peptide ions produced by electrospray ionization were deposited as ions by soft-landing (SL) onto fluorinated and hydrogenated self-assembled monolayer (FSAM and HSAM) surfaces using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially designed for studying collisions of large ions with surfaces. Analysis of modified surfaces was performed in situ by combining 2 keV Cs(+) secondary ion mass spectrometry with FT-ICR detection of the sputtered ions (FT-ICR-SIMS). Similar SIMS spectra obtained following SL at different collision energies indicate that peptide fragmentation occurred in the analysis step (SIMS) rather than during ion deposition. The effect of the surface on SL was studied by comparing the efficiencies of SL on gold, FSAM, HSAM, and COOH-terminated SAM surfaces. It was found that FSAM surfaces are more efficient in retaining ions than their HSAM analogues, consistent with their larger polarizability. The efficiency of soft-landing of different peptides on the FSAM surface increases with the charge state of the ion, also consistent with an ion-polarizable molecule model for the initial stage of soft-landing on SAM surfaces. The gradual decrease of peptide ion deposition efficiency with an increase in collision energy found experimentally was quantitatively rationalized using the hard-cube model.  相似文献   

4.
5.
Self-assembled monolayers (SAMs) formed from the reaction of 1-(10-acetylsulfanyldecyl)-4-[2-(4-dimethylaminonaphthalen-1-yl)-vinyl]-quinolinium iodide (1a) and gold-coated substrates exhibit asymmetric current-voltage (I-V) characteristics with a rectification ratio of 50-150 at +/-1 V. It is the highest to date for a molecular diode, and the improved behavior may be assigned in part to the controlled alignment of the donor-(pi-bridge)-acceptor moieties and in part to steric hindrance, which imposes a nonplanar structure and effectively isolates the molecular orbitals of the donor and acceptor end groups. The molecular origin of the rectification is verified by its suppression upon exposure to HCl vapor, which protonates the dimethylamino group and inhibits the electron-donating properties, with restoration upon exposure to NH3. It is also established by a reduced rectification ratio of ca. 2 at +/-1 V when the cationic D-pi-A+ moieties adopt an antiparallel arrangement in self-assembled films of the derivative, bis-[1-(10-decyl)-4-[2-(4-dimethylaminonaphthalen-1-yl)-vinyl]-quinolinium]-disulfide diiodide (1b), which adsorbs via one of its terminal donors without rupture of the sulfur-sulfur bond: Au/D-pi-A+-C10H20-S-S-C10H20-+A-pi-D (I-)2.  相似文献   

6.
A novel method coupling the Langmuir-Blodgett (LB) deposition of silica particles and the formation of a self-assembled monolayer (SAM) of alkylsilane is proposed for fabricating hydrophobic surfaces. The LB deposition and the SAM are supposed to confer the substrate surface roughness and low surface energy, respectively. By controlling the hydrophobic-hydrophilic balance of the silica particle surface through the adsorption of surfactant molecules, deposition of monolayers consisting of hexagonally close-packed arrays of particles on a glass substrate can then be successfully conducted in a Langmuir trough. LB particulate films with a particle layer number up to 5 were thereby prepared. A sintered and hydrophobically finished particulate film with roughness factor of 1.9 was finally fabricated by sintering and surface silanization. Effects of particle size and particle layer number on the wetting behavior of the particulate films were systematically studied by measuring static and dynamic water contact angles. The experimental results revealed that a static contact angle of about 130 degrees resulted from the particulate films regardless of the particle size and particle layer number. This is consistent with the predictions of both the Wenzel model and the Cassie and Baxter model in that roughness of a hydrophobic surface can increase its hydrophobicity and a switching of the dominant mode from Wenzel's to Cassie and Baxter's. In general, an advancing contact angle of about 150 degrees , a receding contact angle of about 110 degrees , and a contact angle hysteresis of about 40 degrees were exhibited by the particulate films fabricated.  相似文献   

7.
Assemblies of magnetic nanoparticles (NPs) are intensively studied due to their high potential applications in spintronic, magnetic and magneto-electronic. The fine control over NP density, interdistance, and spatial arrangement onto substrates is of key importance to govern the magnetic properties through dipolar interactions. In this study, magnetic iron oxide NPs have been assembled on surfaces patterned with self-assembled monolayers (SAMs) of mixed organic molecules. The modification of the molar ratio between coadsorbed 11-mercaptoundecanoic acid (MUA) and mercaptododecane (MDD) on gold substrates is shown to control the size of NPs domains and thus to modulate the characteristic magnetic properties of the assemblies. Moreover, NPs can be used to indirectly probe the structure of SAMs in domains at the nanometer scale.  相似文献   

8.
《Supramolecular Science》1997,4(3-4):279-291
Glucose oxidase was immobilized on a Langmuir-Blodgett film of cellulose acetate propionate deposited on a self-assembled monolayer coated substrate. These layers were characterized in terms of their ellipsometric thickness, wettability and infra-red spectra. Glucose oxidase was immobilized on this composite layer by physisorption. The presence of the enzyme on the surface was confirmed by ellipsometry, infra-red spectroscopy and by detecting its activity electrochemically. An enzyme population remained active after adsorption onto this assembly.  相似文献   

9.
In this article the adsorption of 3-methylthiophene on planar and nanoparticle Au surfaces is investigated. The resulting systems are compared with a benchmark system based on 1-decanethiol. The characterization data collected evidence the formation of a packed 3-methylthiophene SAM on the planar surface. In particular, spectroscopic investigations suggest that 3-methylthiophene aromatic system is not adsorbed on the surface through the pi-electron system but rather through the S atom alone. On the other hand, the behavior of 3-methylthiophene on nanoparticle surfaces is notably different from that of the alkanethiol. Only a limited fraction of the surface of Au nanoparticles results to be actually coated after purification; this notwithstanding, the nanoparticle growth seems to be strongly influenced by the presence of such a labile encapsulating agent.  相似文献   

10.
Attachment of biomolecules on gold, silicon or glass surfaces has direct implications for the development of novel biosensors in the context of nanoscale detection of pathogens and other metabolites related to issues of human health. In this critical review, we have highlighted the current developments in various techniques of immobilization of biomolecules, specifically biological macromolecules on surfaces through the modification of a functional self-assembled monolayer. The utility of such immobilized biomolecules in the area of biosensing in nanoscale has been surveyed. Merits and demerits of some of the methods with reference to sensitivity of detection and practical use have been discussed (221 references).  相似文献   

11.
Human red blood cell acetylcholinesterase was incorporated into planar lipid membranes deposited on alkanethiol self-assembled monolayers (SAMs) on gold substrates. Activity of the protein in the membrane was detected with a standard photometric assay and was determined to be similar to the protein in detergent solution or incorporated in lipid vesicles. Monolayer and bilayer lipid membranes were generated by fusing liposomes to hydrophobic and hydrophilic SAMs, respectively. Liposomes were formed by the injection method using the lipid dimyristoylphosphatidylcholine (DMPC). The formation of alkanethiol SAMs and lipid monolayers on SAMs was confirmed by sessile drop goniometry, ellipsometry, and electrochemical impedance spectroscopy. In this work, we report acetylcholinesterase immobilization in lipid membranes deposited on SAMs formed on the gold surface and compare its activity to enzyme in solution.  相似文献   

12.
In-situ scanning tunneling microscopy (STM), cyclic voltammetry (CV), and infrared reflection-adsorption spectroscopy (IRRAS) have been used to examine the electrodeposition of gold onto Pt(111) electrodes modified with benzenethiol (BT) and benzene-1,2-dithiol (BDT) in 0.1 M HClO4 containing 10 microM HAuCl4. Both BT and BDT were attached to Pt(111) via one sulfur headgroup. STM and IRRAS results indicated that the other SH group of BDT was pendant in the electrolyte. Both BT and BDT formed (2 x 2) structures at the coverage of 0.25, and they were transformed into (square root(3) x square root(3))R30 degrees as the coverage was raised to 0.33. These two organic surface modifiers resulted in 3D and 2D gold islands at BT- and BDT-coated Pt(111) electrodes, respectively. The pendant SH group of BDT could interact specifically with gold adspecies to immobilize gold adatoms on the Pt(111) substrate, which yields a 2D growth of gold deposition. Molecular resolution STM revealed an ordered array of (6 x 2 square root(13)) after a full monolayer of gold was plated on the BDT/Pt(111) electrode. Since BDT was strongly adsorbed on Pt(111), gold adatoms only occupied free sites between BDT admolecules on Pt(111). This is supported by a stripping voltammetric analysis, which reveals no reductive desorption of BDT admolecules at a gold-deposited BDT/Pt(111) electrode. It seems that the BDT adlayer acted as the template for gold deposit on Pt(111). In contrast, a BT adlayer yielded 3D gold deposit on Pt(111). This study demonstrates unambiguously that organic surface modifiers could contribute greatly to the electrodeposition of metal adatoms.  相似文献   

13.
Here we describe a novel method of preparing hydrophobic silica particles (100-150 nm; water contact angle of dropcasted film ranging from 60 degrees to 168 degrees) by surface functionalization using different alkyltrichlorosilanes. During their preparation, the molecular surface roughness is also concurrently engineered facilitating a change in both the surface chemical composition and the geometrical microstructure to generate hierarchical structures. The water contact angle has been measured on drop-cast film surface. The enhancement in the water contact angle on 3D (curved) SAMs in comparison to that on 2D (planar) surface is discussed using the Cassie-Baxter equation. These silica particles can be utilized for many potential applications including selective adsorbents and catalysts, chromatographic supports and separators in microfluidic devices.  相似文献   

14.
We recently investigated specific ion effects near a single charged self-assembled monolayer (SAM) in a salt solution by exploiting a modified Poisson–Boltzmann equation that accounts for both water profile and ion-surface potential profiles inferred from molecular dynamics simulations. In the present contribution we extend this work to consider two charged SAMs interacting across different salt solution. Our results demonstrate one important reason why the double layer force between charged colloidal surfaces in electrolytes could be highly ion specific.  相似文献   

15.
A theoretical study of protein docking to self-assembled monolayers using a new approach is presented. Docking experiments based on space complementarity implemented in FTDock software were performed for three different proteins: tubulin dimer, cytochrome c, and lysozyme. The proteins were adsorbed on alkanethiol surfaces with different terminating groups and 50,000 best orientations of each protein were analyzed. For all systems three filters based on different chemical and biological approaches were applied. Correctly docked proteins for the cytochrome c and lysozyme systems were found in a list of the first 12 results after applying the geometrical and grouping filter and in a list of the first 3 results after applying the biological filter. We have found that alkanethiol monolayers with odd and even numbers of -CH2- groups have similar properties in terms of interactions with the two proteins. Docking of the tubulin dimer revealed that the orientation favored from the applicational point of view can be found in a list of the first 14 results for monolayers with different terminating groups and that there may be a noticeable difference in tubulin dimer interactions with alkanethiol chains of various length. The results for tubulin dimer docking combined with microtubules ability of reversible assembly suggest that these biological structures may become good candidates to serve as templates for fabrication of nanowires and other nanoscale electronic devices. The new method of theoretical docking presented may be used as a fast and reliable tool complementing other theoretical and experimental techniques of exploring other protein-surface interfaces.  相似文献   

16.
Films of butanedithiol interconnected nanoparticles can exhibit a percolation-driven insulating to metal transition. To explore properties of materials with interpolating behavior, we have measured conductance of these films with systematically varying thickness. Films below a certain threshold coverage exhibit thermally assisted conductance and conductance suppression near zero bias indicative of single-electron-charging barriers. In analogy with semiconductors, we show that these films permit transistor-type gating of film conductivity.  相似文献   

17.
The grand canonical Monte Carlo technique and atomistic force fields are used to calculate the force-distance relations and free energies of adhesion between carboxyl and methyl terminated alkanethiolate self-assembled monolayers (SAMs) in water. Both symmetric and asymmetric confinements are considered, as formed by like and unlike SAMs, respectively. As the confinement is increased, water confined by the hydrophobic methyl terminated SAMs experiences capillary evaporation. As a consequence, the adhesion energy is determined by the direct interaction between bare SAMs. In the asymmetric system, an incomplete capillary evaporation is observed, with the number of water molecules dropped by more than an order of magnitude. The remaining water molecules are all adsorbed on the hydrophilic SAM, while the hydrophobic SAM is separated from the rest of the system by a thin vapor layer. The calculated free energies of adhesion are in acceptable agreement with experiment.  相似文献   

18.
This review is focused on what has been learned in recent research studies concerned with fundamental aspects of soft-landing and reactive landing of peptide ions on self-assembled monolayer surfaces (SAMs). Peptide ions are particularly attractive model systems that provide important insights on the behavior of soft landed proteins, while SAMs provide a convenient and flexible platform for tailoring the interfacial properties of metals and semiconductor surfaces. Deposition of mass-selected ions on surfaces is accompanied by a number of processes including charge reduction, neutralization, covalent and non-covalent binding, and thermal desorption of ions and molecules from the substrate. Factors that affect the competition between these processes are discussed.  相似文献   

19.
An electrode construct was fabricated in which a self-assembled monolayer containing a novel norbornylogous bridge was covalently attached to flavin adenine dinucleotide (FAD), the redox active centre of several oxidase enzymes. The electrochemistry of the construct was investigated before and after the reconstitution of glucose oxidase around the surface bound FAD. Rapid rates of electron transfer were observed both before and after the reconstitution of biocatalytically active enzyme. However, no biocatalytic activity was observed under anaerobic conditions suggesting the a lack of enzyme turnover through direct electron transfer. It is proposed that a decrease in the electronic coupling between the redox active FAD and the electrode following reconstitution of the glucose oxidase – a probable consequence of the FAD being immersed in a protein environment – was responsible for the inability of the enzyme to be turned over under anaerobic conditions.  相似文献   

20.
Strontianite nanowires have been synthesized on self-assembled monolayers (SAM) in the presence of polyacrylate templates. The morphology of this product exhibits characteristic differences from that of products obtained in the absence of polyacrylate. It is demonstrated that the template-induced crystallization process involves the interaction between the SAM surface, polyacrylate (a dissolved polyelectrolyte), and the cations/anions in solution. By the combination of these components, hierarchically ordered mineral hybrid structures are formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号