首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrids of silver nanoparticle-decorated reduced graphene oxide (Ag-RGO) have been prepared with the use of poly(ionic liquid) (PIL) as a versatile capping agent to develop volatile organic compound (VOC) sensors. The hybrid materials of Ag-RGO/PIL were assembled into three-dimensional-laminated nanostructures, where spherical Ag nanoparticles with diameters between 50 and 300 nm were homogeneously distributed on the graphene sheets and interspaced between them. Ag-RGO/PIL sensors were fabricated by spray layer-by-layer technique and used to detect a set of polar (methanol, ethanol, methyl acetate, acetone and water) and non-polar (chloroform, dichlorobenzene, toluene and styrene) organic vapours. Much higher sensitivity and discriminability were obtained for polar vapours although non-polar ones could also be detected. In comparison with either simple reduced graphene oxide or carbon nanotubes (CNT) functionalised by PIL, the hybrid Ag-RGO/PIL-based sensors showed superior performances in terms of sensitivity, selectivity, stability and high reliability. For example, a signal-to-noise ratio up to 168 was obtained for 1 ppm of methanol and signals drift between two experiments spaced out in the time of 3 months was less than 3 %. It is expected that by extrapolation, a limit of detection at the parts per billion level can be reached. These results are promising to design e-noses based on high stability chemoresistive sensors for emerging applications such as anticipated diagnostic of food degradation or diseases by the analysis of VOC, some of them being in this case considered as biomarkers.  相似文献   

2.
Reversible regulation of membrane microstructures via non‐covalent interactions is of considerable interest yet remains a challenge. Herein, we discover a general one‐step approach to fabricate supramolecular porous polyelectrolyte membranes (SPPMs) from a single poly(ionic liquid) (PIL). The experimental results and theoretical simulation suggested that SPPMs were formed by a hydrogen‐bond‐induced phase separation of a PIL between its polar and apolar domains, which were linked together by water molecules. This unique feature was capable of modulating microscopic porous architectures and thus the global mechanical property of SPPMs by a rational design of the molecular structure of PILs. Such SPPMs could switch porosity upon thermal stimuli, as exemplified by dynamically adaptive transparency to thermal fluctuation. This finding provides fascinating opportunities for creating multifunctional SPPMs.  相似文献   

3.
A nonaqueous dispersion of poly(3,4‐ethylenedioxythiophene) (PEDOT) was prepared with the use of polymeric ionic liquid (PIL) as a polymerization template and phase transfer medium. A detailed investigation was performed to understand the role of PIL in the course of polymerization and phase transfer reaction. On the basis of our findings from X‐ray photoelectric spectroscopy (XPS), we propose a mechanism by which the PIL leads to the nanostructured PEDOT colloids in various organic solvents and thus facilitating smoother surface morphologies of the PEDOT‐PIL films. In addition, the enhancement of charge transport was observed for PEDOT‐PIL complex when compared with PEDOT without PIL. Raman spectroscopy indicates that there is a reduced interaction between the charge carriers on the PEDOT and the counter ions bound to PIL, thus promoting charge carrier hopping rates. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6872–6879, 2008  相似文献   

4.
The effect of adding primary n-alcohols with aliphatic chains and hexane on the nanostructure of a series of 14 protic ionic liquids (PILs) was explored using small and wide angle X-ray scattering (SAXS and WAXS). PILs were investigated with primary, secondary and tertiary ammonium cations containing different alkyl chain lengths, with and without hydroxyl substitution of the alkyl chain. Formate or nitrate anions were paired with these cations. The PILs which had no identified intermediate range order between 5-16 ? had very low solubilities of the solutes. The other PILs, which had non-polar domains present, were mostly miscible with the primary alcohols of ethanol, propanol and butanol. When the alkyl chain length of the alcohols was similar to the PILs then the alcohols co-partitioned with the alkylammonium cation components of the PILs and caused either an increase or decrease in the size of the non-polar domains, depending on whether the alcohol chain length was longer or shorter than that of the cation in the PIL respectively. For ethylammonium nitrate (EAN) with propanol or butanol and propylammonium nitrate (PAN) with butanol, the difference between the alcohol chain length and the alkyl chain length was too great to lead to a modified nanostructure, and instead large aggregates were present. The solubility of hexane in the alkylammonium nitrate PILs had a very strong correlation to the alkyl chain length. The addition of hexane had very little effect on the non-polar domain sizes, which was attributed to it not being orientated in alignment with the alkylammonium cations in the non-polar domains. Lastly, seven binary PIL-PIL solution series were investigated using SAXS and WAXS to show how the nanostructure of these systems can be fine tuned to control the size and structure of the non-polar domains.  相似文献   

5.
Approximate partial phase diagrams for nine amphiphile-protic ionic liquid (PIL) systems have been determined by synchrotron source small angle X-ray scattering, differential scanning calorimetry and cross polarised optical microscopy. The binary phase diagrams of some common cationic (hexadecyltrimethyl ammonium chloride, CTAC, and hexadecylpyridinium bromide, HDPB) and nonionic (polyoxyethylene (10) oleyl ether, Brij 97, and Pluronic block copolymer, P123) amphiphiles with the PILs, ethylammonium nitrate (EAN), ethanolammonium nitrate (EOAN) and diethanolammonium formate (DEOAF), have been studied. The phase diagrams were constructed for concentrations from 10 wt% to 80 wt% amphiphile, in the temperature range 25 °C to >100 °C. Lyotropic liquid crystalline phases (hexagonal, cubic and lamellar) were formed at high surfactant concentrations (typically >50 wt%), whereas at <40 wt%, only micelles or polydisperse crystals were present. With the exception of Brij 97, the thermal stability of the phases formed by these surfactants persisted to temperatures above 100 °C. The phase behaviour of amphiphile-PIL systems was interpreted by considering the PIL cohesive energy, liquid nanoscale order, polarity and ionicity. For comparison the phase behaviour of the four amphiphiles was also studied in water.  相似文献   

6.
Liquid-crystalline blue phases (BPs) are stable only for very narrow temperature range between the isotropic and the chiral nematic phase that severely hinders their applicability. Herein, the aminoazobenzol group was chemically grafted onto epoxy group of graphene oxide (GO) via addition reaction. Successful grafting of aminoazobenzol group was confirmed using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), UV–vis absorption spectra and thermogravimetric analysis (TGA). The resultant aminoazobenzol group–modified GO sheets, which is reduced (RGO-Az), were easily redispersable in common organic solvents or liquid crystals (LCs). By doping different contents of RGO-Az, nanosheets could stabilise BP and increase the BP range. When doped with 0.5 wt% RGO-Az, the mixtures show the wider range with 5.9°C than the range with 3.6°C of BPLCs without RGO-Az. Meanwhile, the phase sequence and the range of the aforementioned phases are reproducible upon heating and cooling, which shows that the BPs doped with RGO-Az nanosheets are thermodynamically stable.  相似文献   

7.
In the initial phase of this study, graphene oxide (GO)/silica was fabricated by assembling GO onto the silica particles, and then gold nanoparticles (GNPs) were used to modify the GO/silica to prepare a novel stationary phase for high‐performance liquid chromatography. The new stationary phase could be used in both reversed‐phase chromatography and hydrophilic interaction liquid chromatography modes. Good separations of alkylbenzenes, isomerides, amino acids, nucleosides, and nucleobases were achieved in both modes. Compared with the GO/silica phase and GNPs/silica phase, it is found that except for hydrophilicity, large π‐electron systems, hydrophobicity, and coordination functions, this new stationary phase also exhibited special separation performance due to the combination of 2D GO with zero‐dimensional GNPs.  相似文献   

8.
Residual dipolar couplings (RDCs) have attracted attention in light of their great impact on the structural elucidation of organic molecules. However, the effectiveness of RDC measurements is limited by the shortage of alignment media compatible with widely used organic solvents, such as DMSO. Herein, we present the first liquid crystal (LC) based alignment medium that is compatible with pure DMSO, thus enabling RDC measurements of polar and intermediate polarity molecules. The liquid crystals were obtained by grafting polymer brushes onto graphene oxide (GO) using free radical polymerization. The resulting new medium offers several advantages, such as absence of background signals, narrow line shapes, and tunable alignment. Importantly, this medium is compatible with π‐conjugated molecules. Moreover, sonication‐induced fragmentation can reduce the size of GO sheets. The resulting anisotropic medium has moderate alignment strength, which is a prerequisite for an accurate RDC measurement.  相似文献   

9.
Polyelectrolyte porous membranes (PPMs) belong to the most interesting classes of materials, because the synergy of tunable pore sizes and charge nature of polyelectrolyte endow them with wide-ranging practical applications. However, owing to the water solubility and ionic nature of the polyelectrolytes, traditional polyelectrolytes are difficult to use in scalable preparation of high-quality PPMs through the well-developed industrial methods. Poly(ionic liquid)s (PIL) are a subclass of functional polyelectrolytes bearing ionic liquid groups in their repeating unites, inheriting the advantages of ionic liquids (ILs) and macromolecular architecture features. In recent years, along with rapid development of PIL materials chemistry, considerable and significant developments involving the novel preparation methods, and structure-property-function relationships of PPMs have been made. In this review, we highlight the latest discovery and proceedings of PPMs, particularly the advancements in how to tailor structures and properties of PPMs by rational structure design of PILs. The formation mechanisms of various PPMs were also discussed in detail from the viewpoint of PILs molecular structures. A future perspective of the challenges and promising potential of PPMs is cast on the basis of these achievements. We expect that these analyses and deductions will be useful for the design of useful PPMs and serve as a source of inspiration for the design of future multifunctional PPMs.   相似文献   

10.
11.
A facile, template-free synthetic route is reported toward poly(ionic liquid) complexes (PILCs) which for the first time exhibit stable micro-/mesoporous structure. This is accomplished via in situ ionic complexation between imidazolium-based PILs and poly(acrylic acid) in various alkaline organic solvents. The PILC can be highly loaded with copper salts and can be used as a catalytic support for effective aerobic oxidation of activated hydrocarbons under mild conditions.  相似文献   

12.
The capability to significantly shorten the synthetic period of a broad spectrum of open organic materials presents an enticing prospect for materials processing and applications. Herein we discovered 1,2,4-triazolium poly(ionic liquid)s (PILs) could serve as a universal additive to accelerate by at least one order of magnitude the growth rate of representative imine-linked crystalline open organics, including organic cages, covalent organic frameworks (COFs), and macrocycles. This phenomenon results from the active C5-protons in poly(1,2,4-triazolium)s that catalyze the formation of imine bonds, and the simultaneous salting-out effect (induced precipitation by decreasing solubility) that PILs exert on these crystallizing species.  相似文献   

13.
A range of protic ionic liquids (PILs) have been identified as being capable of supporting the self-assembly of the nonionic surfactants myverol 18-99 K (predominantly monoolein) and phytantriol. PIL-surfactant penetration scans have provided a high throughput technique to determine which lyotropic liquid crystalline phases were formed in the 40 PIL-surfactant systems investigated. Lamellar, inverse hexagonal, and bicontinuous cubic phases that are stable in excess PIL have been observed in surfactant-PIL systems. The studied PILs possess a wide range of solvent properties, including surface tension and viscosity. The nature of the formed amphiphile self-assembly phases is discussed in terms of the PIL structure and solvent properties.  相似文献   

14.
Ionic liquids (ILs) are novel nonmolecular solvents. Their unique properties, such as high thermal stability, tunable viscosity, negligible vapor pressure, nonflammability, and good solubility for inorganic and organic compounds, make them excellent candidates as extraction media for a range of microextraction techniques. Many physical properties of ILs can be varied, and the structural design can be tuned to impart the desired functionality and enhance the analyte extraction selectivity, efficiency, and sensitivity. This paper provides an overview of the applications of ILs in liquid phase microextraction technology, such as single‐drop microextraction, hollow fiber based liquid phase microextraction, and dispersive liquid–liquid microextraction. The sensitivity, linear calibration range, and detection limits for a range of target analytes in the methods were analyzed to determine the advantages of ILs in liquid phase microextraction.  相似文献   

15.
Vapor pressure data were measured for nine binary systems containing water, ethanol, or methanol with one of three protonic ionic liquids (PILs), viz. mono-, di- and tri-ethanolammonium tetrafluoroborate ([HMEA][BF4], [HDEA][BF4], and [HTEA][BF4]), at varying temperatures and PIL-contents using a quasi-static ebulliometer. The vapor pressure data were correlated by NRTL model with an overall average absolute relative deviation (AARD) of 0.0175. It is showed that the effect of PILs on the vapor pressure lowering of solvents follows the order of [HMEA][BF4] > [HDEA][BF4] > [HTEA][BF4], and the vapor pressure lowering degree follows the order of water > methanol > ethanol. Besides, the activity coefficients of solvent for binary system {solvent + PIL} at fixed PIL mole fraction of 0.10 were calculated using the regressed NRTL parameters. The results indicate that three PILs can give rise to a negative deviation from the Raoult's law for water and methanol and a positive deviation for ethanol to a varying degree, leading to the variation of relative volatility of a solvent.  相似文献   

16.
In this work how the microscopic properties of a molecular solvent affect the chemical environment of the protic ionic liquids (PILs) was analyzed. Using Reichardt’s dye as indicator of acidity, new acidity constant values for eight PILs (pKaPILs) were determined by spectrophotometric titration. Modifying the character hydrogen bonding donor of the molecular solvent it is possible to handle the PIL acid strength. Thus, we can turn basic PILs into acidic ones thereby the molecular solvent could be used as ‘additive’ for PILs, which allowed us to tune PILs design.  相似文献   

17.
A series of protic ionic salts were synthesised by a simple acid–base reaction from various pyridine derivatives and dodecylbenzenesulfonic acid in a common organic solvent and characterised in terms of their thermal and lyotropic liquid crystalline properties using various experimental techniques. All of them exhibited lyotropic liquid crystalline phases in toluene, methanol, acetonitrile, dimethyl sulfoxide and water. Their critical concentrations for the formation of biphasic solutions and concentrations for the formation of lyotropic solutions were quite broad depending on the dielectric constants of the solvents. Their lyotropic phases were identified as lamellar phases, since their textures exhibited bâtonnets, oily streaks and mosaic textures. They can potentially be used for many organic transformations, which may have implications in green chemistry.  相似文献   

18.
Combining the continuous flow liquid-liquid extraction (CFLLE) and supported liquid membrane (SLM) extraction, a novel aqueous-aqueous extraction technique that we termed continuous flow liquid membrane extraction (CFLME) is developed for trace-enrichment. The analyte was firstly extracted into the organic phase in the CFLLE step, then transported onto the organic liquid membrane that formed on the surface of the micro porous membrane of the SLM equipment. Finally, it passed through the liquid membrane and was trapped by the acceptor. Aspects related to CFLME were studied by using dichloromethane as liquid membrane, and sulfonylurea herbicides as model compounds. An enrichment factor of over 1000 was obtained when 10 μg l−1 of MSM was enriched for 120 min by this technique. The drawbacks of only a few organic solvents can be selected as liquid membrane with a limited lifetime in SLM operation was overcome. In this CFLME method, almost all solvents that used in the conventional liquid-liquid extraction (LLE) can be adopted and the lifetime of liquid membrane is no longer a problem.  相似文献   

19.
A new application of the polymeric ionic liquid (PIL) in capillary electrophoresis is reported. Poly(1-vinyl-3-butylimidazolium bromide) was physically adsorbed on silica capillary as the simple and effective coating for capillary electrophoresis (CE) analysis, in which the PIL is not present in the background electrolyte. The electroosmotic flow (EOF) of the PIL-coated capillary as compared with that of the bare fused-silica capillary shows a different dependence on electrolyte pH values. The EOF is reversed over a wide pH range from 3.0 to 9.0 and shows good repeatability. It is also found that the coated capillary has a good tolerance to some organic solvents, 0.1 M NaOH and 0.1 M HCl. The PIL-coated capillary has been employed in different areas. Both the basic proteins and anionic analytes can be well separated by PIL-coated capillaries in a fast and easy way. The PIL-coated capillary is also able to separate organic acid additives in a grape juice. The results showed that this type of coating provides an alternative to the CE separation of anions and basic proteins.  相似文献   

20.
Room temperature ionic liquids (RTILs) have been used as novel solvents to replace traditional volatile organic solvents in organic synthesis, solvent extraction, and electrochemistry. The hydrophobic character and water immiscibility of certain ionic liquids allow their use in solvent extraction of hydrophobic compounds. In this work, a typical room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6], was used as an alternative solvent to study liquid/liquid extraction of heavy metal ions. Dithizone was employed as a metal chelator to form neutral metal-dithizone complexes with heavy metal ions to extract metal ions from aqueous solution into [C4mim][PF6]. This extraction is possible due to the high distribution ratios of the metal complexes between [C4mim][PF6] and aqueous phase. Since the distribution ratios of metal dithiozonates between [C4mim][PF6] and aqueous phase are strongly pH dependent, the extraction efficiencies of metal complexes can be manipulated by tailoring the pH value of the extraction system. Hence, the extraction, separation, and preconcentraction of heavy metal ions with the biphasic system of [C4mim][PF6] and aqueous phase can be achieved by controlling the pH value of the extraction system. Preliminary results indicate that the use of [C4mim][PF6] as an alternate solvent to replace traditional organic solvents in liquid/liquid extraction of heavy metal ions is very promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号