首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we investigated the enlargement of liquid crystal (LC) blue-phase (BP) temperature range using the rod-like low-molecular-weight cyano phenyl-type chiral nematic LC with various core group and chiral dopant concentrations. Also, the electro-optic response time was investigated for them. We found that the BP temperature range was strongly dependent upon the core structure and the chiral dopant concentration for the chiral nematic LC mixtures having the same terminal group. Also, we found a stable BP with a wide temperature range (more than 6 K), including a BP-isotropic coexistence state over 13.5 K upon heating and cooling processes and very fast response time (less than 1 ms), by using the cyano phenyl-type chiral nematic LC mixture with a high molecular aspect ratio and a high chiral dopant concentration.  相似文献   

2.
《Liquid crystals》2000,27(3):387-391
Porous thin films with engineered microstructures have been fabricated using glancing angle deposition (GLAD). GLAD films with chiral microstructures have been previously shown to exhibit unique chiral optical response. The pores of these films were embedded with (non-chiral) nematic liquid crystals (LCs) to produce a new composite optical material wherein the GLAD film induces chiral nematic-like LC orientation. We demonstrate here reversible electro-optic switching of the LC component of these hybrid films. Unaddressed, cells of GLAD/LC hybrid films show enhanced chiral optic response compared with the unfilled GLAD film. When addressed, the chiral optic response vanishes.  相似文献   

3.
In order to study the droplet pattern and electro-optic (EO) behaviour of polymer dispersed liquid crystal (PDLC) with the addition of dye, dichroic polymer dispersed liquid crystal (DPDLC) films were prepared using a nematic liquid crystal (NLC), photo-curable polymer (NOA 65) and anthraquinone blue dichroic dye (B2), in equal ratio (1:1) of polymer and liquid crystal (LC) by polymerisation induced phase separation (PIPS) technique. Dichroic dye was taken in different concentration (wt./wt. ratio) as 0.0625%, 0.125%, 0.25%, 0.5% and 1% of the LC mixture in DPDLC films. Initially, in an open circuit when there is no proviso for external electric field (0 V), LC droplets in polymer matrix exhibited bipolar pattern, though on closing the circuit with the increase of electric field pattern of droplets starts changing, LC molecules align along the direction of applied electric field and aligned completely relatively at higher field (30 V), which illustrate vertical radial pattern. Further, results show that the DPDLC film containing 0.0625% dye concentration with consistent average droplet size ~4.30 μm, exhibits the best transmission at lower operating voltage.  相似文献   

4.
The phase of a liquid crystal (LC) changing from a nematic phase to a cholesteric (Ch) mesophase is achieved by adding different ratios of chiral dopants S811. By studying the transmission spectrum, we are able to measure the helical pitch in cholesteric phase. The pitch in the mixtures of nematic E7 and chiral dopants S811 as a function of the concentration of the dopant and temperature is investigated. The sensitivity of the selective reflection notch of the cholesteric phase to the thermal tuning depends strongly on the ratios of the chiral dopants. It reveals that the influence of temperature is more profound for those cholesteric liquid crystals (CLCs) which exhibit smectic A (SmA) at lower temperatures. When fitted using Keating's formula, the helical pitch calculated from our experimental results lies on the predicted curve. Optimised ratios of the mixture CLCs for the optimised reflection band with the specified wavelength ranging from 467 nm to 2123 nm are suggested.  相似文献   

5.
ABSTRACT

The two-dimensional graphene-honeycomb structure can interact with the liquid crystal’s (LC) benzene rings through π–π electron stacking. This LC–graphene interaction gives rise to a number of interesting physical and optical phenomena in the LC. In this paper, we present a combination of a review and original research of the exploration of novel themes of LC ordering at the nanoscale graphene surface and its macroscopic effects on the LC’s nematic and smectic phases. We show that monolayer graphene films impose planar alignment on the LC, creating pseudo-nematic domains (PNDs) at the surface of graphene. In a graphene-nematic suspension, these PNDs enhance the orientational order parameter, exhibiting a giant enhancement in the dielectric anisotropy of the LC. These anisotropic domains interact with the external electric field, resulting in a non-zero dielectric anisotropy in the isotropic phase as well. We also show that graphene flakes in an LC reduce the free ion concentration in the nematic media by an ion-trapping process. The reduction of mobile ions in the LC is found to have subsequent impacts on the LC’s rotational viscosity, allowing the nematic director to respond quicker on switching the electric field on and off. In a ferroelectric LC (smectic-C* phase), suspended graphene flakes enhance the spontaneous polarisation by improving the tilted smectic-C* ordering resulting from the π–π electron stacking. This effect accelerates the ferroelectric-switching phenomenon. Graphene can possess strain chirality due to a soft shear mode. This surface chirality of graphene can be transmitted into LC molecules exhibiting two types of chiral signatures in the LCs: an electroclinic effect (a polar tilt of the LC director perpendicular to, and linear in, an applied electric field) in the smectic-A phase, and a macroscopic helical twist of the LC director in the nematic phase. Finally, we show that a graphene-based LC cell can be fabricated without using any aligning layers and ITO electrodes. Graphene itself can be used as the electrodes as well as the aligning layers, obtaining an electro-optic effect of the LC inside the cell.  相似文献   

6.
By using polarizing microscopy analysis we have found that several achiral homologues of the 4-n-alkyloxybenzoic acids, displaying only the nematic phase, exhibit the optical properties of a chiral liquid crystal system. These acids possess a mesophase due to the formation of dimers via hydrogen bonding. The microtextural analysis was carried out in the temperature ranges of the isotropic, nematic and crystal phases. The nucleation of a chiral texture in small domains emerging on cooling in the isotropic phase was observed. These small domains are characterized by a conoscopic cross which presents an azimuth of 45° with respect to the polarizer axis, contrary to the usual nematic drops, for which the conoscopic cross is not rotated. On further cooling, these domains coalesce in the nematic phase close to the clearing point, thus building large chiral monodomains. Such coalesced droplets exhibit very thin stripe lines, as in the case of pure cholesterics with a tilted helix axis. Moreover, left- and right-handed chiral domains were observed, combined in regions partially separated by 'oily streaks', also typical of pure cholesterics. On cooling, the chiral nematic (N*) phase transformed through a pronounced texture transition into a normal nematic phase. However, the small chiral grains that formed from the isotropic phase are retained close to the surface, acting as 'memorizing centres'. With suitable boundary conditions, they can provide a macroscopic twist driven by the surface. Moreover, a twisted smectic B not present in the bulk phase diagram was found and interpreted as induced by the surface. Also in the crystal phase a strong memorization of the chiral N* texture was observed.  相似文献   

7.
Blue phase (BP) stability of a chiral nematic liquid crystal (LC) mixture is dependent upon chemical structure as well as physical properties. In this study, the blue phase temperature range dependent on alkyl chain length was investigated in order to evaluate the relationship between blue phase stability and the molecular structures of four kinds of 4-n-alkyloxy-4'-cyanobiphenyl (n-OCB) homologue chiral nematic LC mixtures composed of rod-like nematic LCs. It was confirmed that the blue phase temperature range was strongly dependent upon the molecular parity, K 33/K 11 and the helical twist power of the n-OCB homologues chiral nematic LC mixtures.  相似文献   

8.
We present freeze-fracture transmission electron microscopy (FF-TEM), dielectric spectroscopy and electro-optic measurements on a dimeric liquid crystal mixture, which previously was proposed to form the twist-bend nematic (Ntb) phase. Our FF-TEM studies provide a direct image of a 10.5 nm periodic structure, consistent with the expected nanoscale, heliconical twist-bend modulation of the molecular orientation. Dielectric measurements in the 100 Hz to 10 MHz range reveal three nearly Debye-type dispersion processes in the nematic and the twist-bend phase. Low frequency 8 V/µm electric fields applied on planar cells cause the optical-scale stripe texture (another characteristic feature of the Ntb phase) to disappear. Higher (>16 V/µm) fields gradually realign the heliconical axis along the electric field; it relaxes back after the field removal.  相似文献   

9.
We report the synthesis and liquid crystalline behaviour of two series of para-substituted terphenyls as dopants with a rigid rod-like shape, rather than a wedge-, pear- or banana-shape, for guest–host nematic mixtures with flexoelectric properties. One series of liquid crystalline dopants is of low-to-strongly negative dielectric anisotropy and the other is of low-to-strongly positive dielectric anisotropy. The usefulness of apolar and polar rod-like dopants as components of flexoelectric nematic mixtures of positive dielectric anisotropy for use in LCDs is investigated in general and the dependence of the flexoelectric properties of the doped nematic mixtures on the polarity of the dopants is studied in particular. The correlation between the concentration of the dopant and the magnitude of the flexoelastic ratio of several guest–host nematic mixtures is investigated.  相似文献   

10.
New ferroelectric side-chain liquid-crystalline polymers, a copolymer and a homopolymer, with siloxane backbone and a triaromatic mesogen as the side group have been synthesized. The materials exhibit a chiral smectic C phase over a large temperature range extending to room temperature. They possess high values of spontaneous polarization: 105 nC cm-2 for the homopolymer and 180 nC cm-2 for the copolymer. The electro-optic switching time in the chiral smectic C phase is extremely fast (150 μs). In the smectic A phase, an electroclinic effect with switching times less than 100 μs and with field induced tilt angles of 18° is observed.  相似文献   

11.
The scope of the present study is the response of a series of antiferroelectric dimeric or bi‐mesogenic siloxanes to an applied electric field with focus on their pretransitional behaviour and the field‐induced antiferro–ferroelectric (AF–F) transition. Most of these compounds possess a molecular tilt close to 45° and spontaneous polarization in the field‐induced ferroelectric (F) phase in the range of 250–300 nC cm?2. In the dimers with a spacer length exceeding five carbons, a transformation from first to second order of the field‐induced AF–F transition is found with temperature. Several different indications for this transformation are identified and their characteristics are discussed in the framework of the existing theoretical models. A large field‐induced in‐plane deviation of the sample optic axis was observed in the pretransitional region of several of the siloxane dimers and is likely due to the flexibility of the linking chains. The potential of the antiferroelectric bimesogenic siloxanes for displaying high contrast images and grey scale capability is shortly discussed. The large molecular tilt close to 45° in combination with the field‐induced AF–F transition of second order seems to be the most attractive features of these materials.  相似文献   

12.
Here we present the optic and electro-optic characteristics of ferroelectric dye guest-host devices incorporating different dye and S*C host materials. We demonstrate fast response time (< 100 μs) single polarizer and zero-polarizer device configurations for high order parameter dichroic dyes and single polarizer fluorescent dye devices. The dynamic data include measurements of response times as functions of voltage, temperature and dye concentration, from which we conclude that the inclusion of certain dyes does not adversely affect the ferroelectric phase. The contrast ratios of these novel guest-host devices are also presented and are shown, as expected, to be functions of tilt angle (and therefore temperature). However, we demonstrate that the high tilt angle of 45° is not necessary for high contrast devices, and in fact for certain devices configurations θ = 22½° is optimum. These results are discussed.  相似文献   

13.
《Liquid crystals》2012,39(12):1769-1779
ABSTRACT

Four chiral dopants exhibiting smectic LC phases themselves were prepared and their helical twisting power (HTP) and thermal phase behaviour in mixtures with four various LC hosts were studied. The influence of host liquid crystal on HTP was evaluated and generally higher values were found for hosts with high birefringence. Unexpectedly, high enhancement was found for an LC-chiral dopant pair, both having a similar aromatic core – biphenyl ring substituted with polar group. All studied chiral dopants exhibited limited compatibility with the LC hosts in twisted nematic phase at room temperature. For one of the studied mixtures, it was able to obtain single twisted nematic phase with selective light reflection band with maximum at wavelength about 1.0 µm. Carboxylic acid-type dopants exhibited total compatibility with the studied host in single twisted nematic phase at elevated temperatures, allowing preparation of mixtures with reflection band in the visible range. In case of the carboxylic acid dopants, blue phases for optimised compositions were observed. Intermolecular hydrogen bonding between carboxylic acid proton and pyridine nitrogen of chiral dopants was found. Doping the LC host with these dopants led to slight enhancement of HTP value and higher solubility in the LC host.  相似文献   

14.
The polymer dispersed nematic liquid crystal (LC) with the tilted surface anchoring has been studied. The droplet orientational structures with two point surface defects – boojums and the surface ring defect – are formed within the films. The director tilt angle α = 40° ± 4° at the droplet interface and LC surface anchoring strength Ws ~ 10–6 (J m?2) have been estimated. The bipolar axes within the studied droplets of oblate ellipsoidal form can be randomly oriented are oriented randomly relatively to the ellipsoid axes as opposed to the droplets with homeotropic and tangential anchoring.  相似文献   

15.
Octadecylamine-functionalised single-walled carbon nanotubes (SWCNTs) were dispersed into nematic liquid crystals (LCs) doped with chiral molecules. The collective orientation of nematic LC molecules in helical layers was manipulated by varying dopant concentration. Highly anisotropic nature of SWCNTs enhanced the anisotropy of the LC as confirmed by polarised fluorescence spectroscopy. The π–π interaction of SWCNTs present in the planar alignment layers and twisted nematic LC molecules affects the molecular relaxation process. An irreversible electro-optic memory in the material has been observed.  相似文献   

16.
Chirality switching is intriguing for the dynamic control of the electronic and optical properties in nanoscale materials. The ability to photochemically switch the chirality in liquid crystals (LCs) is especially attractive given their potential applications in electro-optic displays, optical data storage, and the asymmetric synthesis of organic molecules and polymers. Here, we present a dynamic photoswitching of the helical inversion in chiral nematic LCs (N*-LCs) that contain photoresponsive axially chiral dopants. Novel photoresponsive chiral dithienylethene derivatives bearing two axially chiral binaphthyl moieties are synthesized. The dihedral angle of the binaphthyl rings changes via the photoisomerization between the open and closed forms of the dithienylethene moiety. The N*-LCs induced by the dithienylethene derivatives that are used as chiral dopants exhibit reversible photoswitching behaviors, including a helical inversion in the N*-LC and a phase transition between the N*-LC and the nematic LC. The present compounds are the first chiral dopants that induce a helical inversion in N*-LC via the photoisomerization between open and closed forms of the dithienylethene moiety.  相似文献   

17.
The concentration, excitation photon wavelength, and polarisation dependent fluorescence of quantum dot (QD)–liquid crystal (LC) mixtures has been studied at room temperature using high-resolution, steady-state fluorescence spectroscopy. The fluorescence of QD–LC mixture increases with increasing QD’s concentration but the spectral red shift of ~10 nm relative to the stock QD–Toluene solution remains independent of concentration. In vertical switching (VS) cells, an external electric field changes the LC alignment direction and enhances the apparent fluorescence intensity. The apparent fluorescence anisotropy compared to that at zero applied electric field monotonically increases up to ~27% at an applied electric field of 0.6 V/µm. These results are consistent with the formation of disc-like assemblages of QDs oriented on planes perpendicular to the director of the nematic liquid crystal (NLC). These findings have important utility in polarisation sensitive photonic devices.  相似文献   

18.
We demonstrate a simple method for measuring the twist elastic constant (K22) of a nematic liquid crystal (LC). By adding some chiral dopant to an LC host, the LC directors rotate 180° in a homogeneous cell, which is known as 180° super-twisted nematic (STN) cell. By preparing two such STN cells with different chiral concentrations and measuring their Fréedericksz threshold voltages, we can obtain the K22 and helical twisting power simultaneously. In the whole process, there is no need to measure the pitch length. Our obtained K22 values agree well with those reported by using other methods.  相似文献   

19.
Formation of gratings upon alternating electric field in compositions of highly birefringent liquid crystal (LC) with novel chiral ionic liquid (CIL) enclosed in 10-µm-thick cells is studied. The compatibility of two organic components of the mixture is investigated. The grating is formed in 1–5% CIL mixtures and causes significant changes of the transmission of polarised light through the cells. Transmission of polarised λ = 633 nm light through the 5% CIL sample is studied with respect to frequency (1 Hz–3 MHz) and amplitude (up to 10 V) of alternating voltage and the results are used for sketch a voltage–frequency phase diagram. Two possible ways of formation of the gratings with perpendicular orientation to that formed from initial state are presented. Two twisting axes in the molecular alignments of the cholesteric LC gratings with perpendicular directions are proposed. Optical switch based on four different states of LC including two gratings with perpendicular directions is proposed. Moreover, behaviour of the rotation of a grating induced by AC field in hybrid planar-homeotropic cell is studied in two frequency regimes and rotation by more than 90° upon change of the AC field amplitude is observed.  相似文献   

20.
The chiral flexoelectro-optic effect is a candidate for realising sub-millisecond electro-optic technologies. Here, we discuss how flexoelectro-optic switching in cholesteric structures can be enhanced by using the dielectric coupling of the field to materials with negative dielectric anisotropy. An experiment is described that can measure the dielectric effect on flexoelectric switching, and the technique is applied to a chiral nematic mixture E7+3.5%R5011. We explore numerically the optimal liquid crystal parameters to best exploit the effect. An enhancement of up to 1° is demonstrated numerically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号