首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Chemically modified Lagenaria vulgaris shell was applied as a new sorbent for the removal of lead (II) ions from aqueous solution in a batch process mode. The influence of contact time, initial concentration of lead (II) ions, initial pH value, biosorbent dosage, particle size and stirring speed on the removal efficiency was evaluated. Biosorbent characterization was performed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Four kinetic models (pseudo-first order, pseudo-second order, Elovich model and Intraparticle diffusion model) were used to determine the kinetic parameters. The experimental results were fitted to the Langmuir, Freundlich, Dubinin–Radushkevich and Temkin models of isotherm. Pseudo-second order kinetic model and Langmuir isotherm model best fitted the experimental data. Sorption process is obtained to be fast and equilibrium was attained within 40 min of contact time. The maximum sorption capacity was 33.21 mg g?1. Biosorption was highly pH-dependent where optimum pH was found to be 5. The results of FTIR and SEM analysis showed the presence of new sulfur functional groups. This study indicated that xanthated Lagenaria vulgaris shell could be used as an effective and low-cost biosorbent for the removal of lead (II) ions from aqueous solution.  相似文献   

2.
A magnetic adsorbent was synthesized by modification of activated carbons with magnetic iron oxide nanoparticles (AC‐MIONs). The preparation method is fast and could be carried out in an ordinary condition. The AC‐MIONs were used as quite efficient adsorbents for separation of methylene blue (MB) from aqueous solution in a batch process. The effect of different parameters such as pH, temperature, electrolyte concentration, contact time and interfering ions on the removal of MB were studied. The adsorption data were analyzed by Langmuir and Freundlich isotherm models and a maximum adsorption amount of 47.62 mg g‐1 and a langmuir adsorption equilibrium constant of 3.0 L mg‐1 were obtained. The obtained results revealed that AC‐MIONs were effective adsorbents for fast removal of MB from different aqueous solutions. This adsorbent was successfully used for removal of MB from Karoon River water.  相似文献   

3.
An indigenously prepared zinc chloride activated Ipomoea carnea (morning glory), a low-cost and abundant adsorbent, was used for removal of Cu(II) ions from aqueous solutions in a batch adsorption system. The chemical activating agent ZnCl2 was dissolved in deionised water and then added to the adsorbent in two different ratios 1:1 and 1:0.5 adsorbent to activating agent ratio by weight. Studies were conducted as a function of contact time, initial metal concentration, dose of adsorbent, and pH. Activated Ipomoea carnea (AIC) were characterised using scanning electron microscopy (SEM), iodine number and methylene blue number. High iodine numbers indicates development of micro pores with zinc chloride activation. Maximum adsorption was noted within pH range 6.0(±0.05). Adsorption process is fast initially and reaches equilibrium after about 4 hours. The kinetic data were analysed using pseudo-first-order and pseudo-second-order models. The pseudo-second-order kinetic model was found to agree well with the experimental data. Adsorption equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The Langmuir model represented the sorption process better than the Freundlich model. Based on the Langmuir isotherm, the monolayer adsorption capacity of Cu(II) ions was 7.855 mg?g?1 for AIC (1:1) and 6.934 mg?g?1 for AIC (1:0.5).  相似文献   

4.
Biosorption of uranyl ions from aqueous solution by Saccharomyces cerevisiae was studied in a batch system. The influence of contact time, initial pH, temperature and initial concentration was investigated. The optimal conditions were found to be 3.5?h of contact time and pH?=?4.5. Temperature had no significant effect on adsorption. The uptake of uranyl ions was relatively fast and 85?% of the sorption was completed within 10?min. The experimental data were well fitted with Langmuir isotherm model and pseudo-second order kinetic model. According to this kinetic model, the sorption capacity and the rate constant were 0.455?mmol UO2 2+/g dry biomass and 1.89?g?mmol?1?min?1, respectively. The Langmuir isotherm indicated high affinity and capacity of the adsorbent for uranyl biosorption with the maximum loading of 0.477?mmol UO2 2+/g dry weight.  相似文献   

5.
The adsorption of the antibiotic amoxicillin at low concentration levels (µg?L?1 order) from aqueous solution on almond shell ashes has been investigated, either by kinetic or equilibrium assays. The effect of the adsorbent amount, initial concentration of the antibiotic, particle diameter (dp) and temperature were considered to evaluate the adsorption capacity of the adsorbent. The results showed that amoxicillin sorption is dependent on these four factors. The adsorption process was relatively fast and equilibrium was established in about 12 hours. The optimum parameters for an initial concentration of 450?µg?L?1 were 50?mg of adsorbent, 303?K and dp?<?600?µm. A comparison of kinetic models showed that pseudo-second order kinetics provides the best correlation of the experimental data. Isotherm data adjusted better to Langmuir equation, with an adsorption capacity of 2.5?±?0.1?mg?g?1 at 303?K. The desorption process was also evaluated (maximum efficiency of 5%). Thermodynamic parameters were calculated and the negative value of ΔH0 and ΔG0 showed that adsorption was exothermic and a spontaneous process.  相似文献   

6.
U(VI) sorption from nitric media using Cyanex272 impregnated on Amberlite XAD-2 resin has been studied using batch method. The influence of different experimental parameter such as aqueous acidity, effect of time, influence of eluting agents on U(VI) uptake was evaluated. The maximum sorption capacity of 0.168?mmol?g?1 of U(VI) evaluated based upon these studies. Sorption of U(VI) follows both the Langmuir and Freundlich adsorption isotherms.  相似文献   

7.
The sorption capacity of cesium (Cs) and selenium (Se) in crushed mudrock was demonstrated in this study through a 2-site Langmuir model. To employ such a numerical analysis, batch tests were applied in this study in synthetic seawater and groundwater with sorption/desorption kinetic experiments (time-dependent) and different concentrations (10?2–10?7 M). The 2-site sorption models, which correspond to two rate constants (λ 1 and λ 2), might be more adequate than 1-site sorption models in characterizing Cs and Se sorption/desorption according to the least square errors between the numerical analysis and the results of the batch tests. The fitting results showed that a 2-site Langmuir model is capable of appropriately describing Cs and Se sorption in mudrock. Consequently, the sorption capacity was calculated at about 0.06 mol/kg for Cs and at 0.015 mol/kg for Se.  相似文献   

8.
The present study characterises sorption of two pesticides, namely, paraquat (PQ) and 2,4-dichlorophenoxyacetic acid (2,4-D) by an Oscillatoria sp.-dominated cyanobacterial mat. Sorption of PQ onto the test mat was not significantly affected by the pH of the solution within the pH range 2–7. However, 2,4-D sorption was strongly influenced by the solution pH and was maximum at pH 2. Whereas PQ sorption increased with increase in temperature, 2,4-D sorption showed an opposite trend. The sorption of PQ and 2,4-D achieved equilibrium within 1 h of incubation, independent of concentration of pesticide and mat biomass in the solution. The pseudo-second-order kinetic model better defined PQ sorption than the pseudo-first-order model, whereas 2,4-D sorption was well defined by both the models. Sorption isotherms of both the pesticides showed L-type curve. Freundlich model more precisely defined PQ sorption than Langmuir model, thereby suggesting heterogeneous distribution of PQ binding sites onto the biomass surface. However, the Langmuir model more correctly defined 2,4-D sorption, thus, indicating homogeneous distribution of 2,4-D binding sites onto the biomass surface. The test biomass is a good sorbent for the removal of PQ because it could, independent of pH of the solution, sorb substantial amount of PQ (q max = 0.13 mmol g−1).  相似文献   

9.
A 3-D cadmium-based coordination polymer, [CdCl2L]n (1) (where L = 1,1-(1,6-hexanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole-2-thione), was synthesized and structurally characterized. The capability of the polymer as an efficient sorbent for Congo red (CR) removal from aqueous solution has been evaluated. Compound 1 has a tetrahedral arrangement with a CdS2Cl2 core. L in 1 is bidentate to two neighboring CdII centers via the methimidazole sulfurs to create 1D chains propagating along the c-axis. The remaining coordination sites are occupied by two terminal chlorides. The chains are further stabilized by intermolecular C–H?Cl hydrogen bonds between the chlorides and hydrogens of the imidazole rings. Parallel chains stack in the 3-D structure. The CdII polymer sorbent was characterized by infrared spectroscopy, elemental analysis, UV–vis, solid fluorescence and X-ray single-crystal diffraction. Sorption kinetics were studied by three kinetic models, second order, Elovich and intraparticle diffusion. The results indicate that the mechanism of the sorption process followed Elovich kinetic model. Sorption equilibrium was also studied with Langmuir, Temkin, and Freundlich isotherm models. The sorption process followed the Temkin isotherm. MIC, MBC, and DNA cleavage activities of 1 were also studied. Furthermore, the UV–vis and solid state fluorescence spectra of 1 were measured.  相似文献   

10.
The removal efficiency of Reactive Blue 19 (RB19) by using surfactant-modified bentonite (MB) from aqueous solutions, and also textile wastewater samples was examined. Natural bentonite (NB) was firstly modified with didodecyldimethylammonium bromide (DDDAB) in order to increase the removal capacity of bentonite. MB was then characterized by Fourier Transformed Infrared Spectrophotometer (FTIR), x-ray diffractometry (XRD), x-ray fluorescence (XRF), Scanning Electron Microscope (SEM)/EDX, zeta potential, elemental, and thermal analysis techniques. The high adsorption capacity of MB was 407.7?mg g?1 at pH?=?1.5 and 20°C. The adsorption of Reactive Blue 19 onto MB agreed with the pseudo-second-order kinetic and Langmuir isotherm models.  相似文献   

11.
The grafting of arginine and glutamic acid on cellulose (through an intermediary step of chlorination) allows improving uranyl sorption of the biopolymer. The sorbents (Arg-Cell and Glu-Cell) were characterized by elemental analysis, FTIR spectrometry, XRD, SEM-EDX analysis and TGA. The sorption efficiency increases with pH; this can be attributed to the deprotonation of carboxylic acid and amine groups and to the formation of polynuclear hydrolyzed uranyl species. Sorption isotherms (fitted by the Langmuir equation) show sorption capacities at saturation of the monolayer of 147 and 168 mg U g?1 for Arg-Cell and Glu-Cell, respectively (compared to 78 mg U g?1 for raw cellulose); maximum sorption capacities at equilibrium (experimental values) reach 138, 160 and 73.4 for Arg-Cell, Glu-Cell and cellulose, respectively. Uranyl sorption is endothermic and is spontaneous for amino acid derivatives of cellulose (contrary to exothermic for cellulose). Uptake kinetics for the different sorbents are fitted by the pseudo-second-order rate equation. Uranium can be desorbed using sulfuric acid solutions, and the sorbents can be recycled for a minimum of five cycles of sorption/desorption: the decrease in sorption capacities at the fifth cycle does not exceed 13%.  相似文献   

12.
Microcrystalline cellulose (MCC) was modified with pyridone derivatives such as pyridone diester (PDE) and pyridone diacid (PDA) by using succinic acid anhydride as a linker. The modified MCCs were characterized by the fourier transform infrared spectroscopy, scanning electron microscopy, thermal gravimetric analysis, elemental analysis and solid state 13C NMR. The adsorption capacities of the modified MCCs to cationic dyes were examined by using methylene blue (MB) as a model dye. It was found that the kinetic adsorption data followed the pseudo-second-order kinetic model, and the adsorption equilibriums were reached less than 10 min. The isothermal adsorption data were fitted with the Langmuir isotherm model very well, from which the maximum adsorption capacities of the MCCs modified with PDE and PDA were determined to be 101.01 and 142.86 mg/g, respectively. Further investigation showed that the modified MCCs were pH-dependent for adsorption of MB in aqueous solutions. The modified MCCs could be used for removal of MB from an aqueous solution at pH 8, and reused by regeneration in an acidic solution. It was tested that the modified MCCs had a high reusability for removal of MB from aqueous solutions, and still maintained high adsorption capacities even after multiple cycles of desorption–adsorption processes. Hence, the MCCs modified with PDE and PDA could be an effective and efficient approach to removal of cationic dyes from aqueous solutions.  相似文献   

13.
Sorption of Th(IV) on Zr2O(PO4)2 as a function of contact time, reaction temperature, pH, ionic strength and solid-to-liquid ratio (m/V) is studied under ambient condition by using batch technique. Effects of fulvic acid (FA), phosphate, sulfate and citrate on Th(IV) sorption are investigated in detail. A pseudo-second-order rate equation is used to simulate the kinetic sorption. The removal of Th(IV) increases with increasing pH and hardly depends on ionic strength. Sorption of Th(IV) increases with increasing m/V and reaction temperature. The presence of FA and phosphate enhances the sorption of Th(IV) on Zr2O(PO4)2 while sulfate and citrate decrease the sorption. The Langmuir and Freundlich models are used to simulate the sorption isotherm of Th(IV) on Zr2O(PO4)2 at different temperatures. The thermodynamic data (i.e., ∆H 0, ∆S 0, ∆G 0) are calculated from temperature dependent sorption isotherms. The results suggest that the sorption process of Th(IV) on Zr2O(PO4)2 is spontaneous and endothermic.  相似文献   

14.
The adsorption of methylene blue (MB) dye from aqueous solution onto a cashew nut shell (CNS) was investigated as a function of parameters such as solution pH, CNS dose, contact time, initial MB dye concentration and temperature. The CNS was shown to be effective for the quantitative removal of MB dye, and the equilibrium was reached in 60 min. The experimental data were analysed by two-parameter isotherms (Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models) using nonlinear regression analysis. The characteristic parameters for each isotherm and the related correlation coefficients were determined. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were also evaluated, the sorption process was found to be spontaneous and exothermic. Pseudo-first-order, pseudo-second-order and Elovich kinetic models were used to analyze the adsorption process. The results of the kinetic study suggest that the adsorption of MB dye matches the pseudo-second-order equation, suggesting that the adsorption process is presumably chemisorption. The adsorption process was found to be controlled by both surface and pore diffusion. Analysis of adsorption data using a Boyd kinetic plot confirmed that the external mass transfer is a rate determining step in the sorption process. A single-stage batch adsorber was designed for different CNS doses to effluent volume ratios using the Freundlich equation. The results indicated that the CNS could be used effectively to adsorb MB dye from aqueous solutions.  相似文献   

15.
Herein, a new adsorbent was developed in order to fast and effective removal of MB from aqueous solution. For this, crosslinked maleic anhydride polymer was synthesized by copolymerization of maleic anydride (MA) with divinyl benzene (DVB) in DMF at 75?°C using a radical initiator AIBN. A new functionalized resin containing carboxylic acid groups was prepared with modification of crosslinked maleic anydride resin with 5-aminoisophthalic acid. Prepared resin was characterized with FTIR, TGA/DTA and SEM. Parameters affecting adsorption such as pH, initial dye concentration and adsorption time, and also, different isotherm and kinetic models were studied. It was observed that synthesized resin could be used to MB fast removal wide pH and concentration range very high efficiency. It was also found to be that Freundlich isotherm model (R2 = 0.9993) and second order kinetic models are much more suitable for adsorption of MB. Moreover, it was also observed that synthesized resin could be used at least five times without losing its original activity.  相似文献   

16.

Sorption of micro- and microamounts of Sr from seawater has been studied using granulated Na-birnessite. Distribution coefficients of 90Sr in the natural seawater are 0.8–1.2?×?103 ml g?1, in the model seawater they are 1.6–1.8?×?103 ml g?1. Application of Na-birnessite was shown to be prospective in sorption–desorption–regeneration regime. In dynamic sorption conditions, over 150 bed volumes of seawater can be purified till 5% breakthrough occurs at feed rate 10 BV h?1. Na-birnessite can be used for 90Sr radionuclide removal from liquid radioactive wastes containing seawater.

  相似文献   

17.
Sorption–desorption behaviour of 137Cs in the Baltic Sea and the Curonian Lagoon was studied in 1997–2009 with the aim to better understand processes responsible for redistribution and sink of 137Cs in the system. Data obtained from several sampling campaigns were analyzed and short and long-term kinetic tracer experiments using natural water and bottom sediments were carried out with particles of various sizes from 0.2 to 50 μm. Samples of suspended particles and bottom sediments collected during two sampling campaigns were fractionated according to the size, and association of 137Cs with solid phase was studied using sequential extraction. The difference in 137Cs behaviour observed between expeditions in 1999 and 2001 was attributed to seasonal variations in chemical composition of suspended particles entering the system and consequent differences between the sorption (in 1999) and the desorption (in 2001) of 137Cs in sea water. Data obtained from tracer kinetic sorption experiments with 134Cs and bottom sediment fractions of different grain size were used for finding a suitable kinetic sorption model, kinetic constants and the corresponding equilibrium K d values. It has been found that the modelled data best conform to the mechanism of ion diffusion through the so-called inert layer on the surface of the sediment particles.  相似文献   

18.
The reactive mechanism of cesium in crushed granite was demonstrated in this study through a numerical analysis or a model of the results of sorption/desorption kinetic tests. To employ such numerical analysis, this study applied batch kinetic tests with different solid to liquid ratios (1: 20 and 1: 30) for the characterization of sorption/desorption reaction of Cs and the calibration/validation of hypothesized reactive models. Based on the least square errors (LSE) between numerical analysis and results of batch tests, the two-site sorption models, which are corresponding to two decay constants (λ 1 and λ 2), might be more adequate than one-site sorption models in characterizing Cs sorption/desorption. Moreover, a two-site Langmuir kinetic model has been found to be capable of appropriately describing Cs sorption/desorption under test conditions.  相似文献   

19.
Magnetic chitosan was prepared by co-precipitation with polymeric Schiff’s base resulting from the reaction of thiourea with glutaraldehyde. This material has great potential as high-effective sorbent for Remazol Brilliant Blue R (RBBR): maximum sorption capacity reached 0.441?mmol?g?1 at pH 1.6 and at 25°C. Kinetic plots, pH dependence, isotherm data, and influences of ionic strength were reported. The data from equilibrium sorption experiments are well fitted to the Langmuir isotherm and the pseudo-second-order sorption kinetics indicates that chemisorption controls the process. The distribution coefficient was calculated at different temperatures and the thermodynamic parameters have been calculated: the sorption reaction is endothermic, spontaneous, and increases the entropy of the system. Alkaline solution (0.5?M NaOH) was used for desorbing RBBR from loaded sorbent. The sorbent exhibited good regenerability over several repeated adsorption/desorption cycles.  相似文献   

20.
Water insoluble sulfonated cellulose was prepared and applied for Cu2+ removal from water. The effects of sorbent dose, initial solution pH, temperature and initial Cu2+ concentration on the removal performance of sulfonated cellulose were investigated. Isothermal data were modeled with the Langmuir and Freundlich isotherm models. The Cu2+ sorption onto sulfonated cellulose followed the Langmuir isotherm model with the maximum sorption capacity of 8.2?mg-Cu2+/g. Removal of Cu2+ showed rapid initial kinetics; in 3?min removal of Cu2+ reached equilibrium status. Thermodynamic study revealed an exothermic sorption process. In addition, sulfonated cellulose is a kind of green and renewable sorbent because it can be easily regenerated by 0.1?M HCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号