首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular dynamics simulations (dissipative particle dynamics–DPD) were developed and used to quantify wall-normal migration of polymer chains in microchannel Poseuille flow. Crossflow migration due to viscous interaction with the walls results in lowered polymer concentration near the channel walls. A larger fraction of the total flow volume becomes depleted of polymer when the channel width h decreases into the submicron range, significantly reducing the effective viscosity. The effective viscosity was quantified in terms of channel width and Weissenberg number Wi, for 5% polymer volume fraction in water. Algebraic models for the depletion width δ(Wi, h) and effective viscosity μe(δ/h, Wi) were developed, based on the hydrodynamic theory of Ma and Graham and our simulation results. The depletion width model can be applied to longer polymer chains after a retuning of the polymer persistence length and the corresponding potential/thermal energy ratio.  相似文献   

2.
We use existing scaling theories by de Gennes, Brochard, and Ajdari to calculate the apparent viscosity of multilayer blends with weakly entangled interfaces. The lowering of the apparent viscosity with respect to the bulk is a manifestation of interfacial slip. The theoretical predictions are compared with the recent experimental data of Zhao and Macosko. The theory is able to describe a continuous transition from a low-slip regime to a high-slip regime when the bulk rheology is still Newtonian, in agreement with experiments. However, the dependence of the apparent viscosity on the shear rate and layer thicknesses is much stronger than what is observed experimentally. The apparent viscosity is also calculated for dilute polymer emulsions. We modify a theory of Palierne, which is valid in the linear viscoelastic regime for the bulk, to include the effects of interfacial slip. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1888–1904, 2004  相似文献   

3.
In our previous study [S.Y. Oh, Y.C. Bae, J. Phys. Chem. B 114 (2010) 8948-8953], we presented a new method to predict liquid-liquid equilibria in ternary simple liquid mixtures by using a combination of a thermodynamic model and molecular simulations. As a continuation of that effort, we extend our previously developed method to ternary polymer systems. In the simulations, we used the dummy atoms to calculate the pair interaction energy values between the polymer segments and the solvent molecules. Furthermore, a thermodynamic model scaling concept is introduced to consider the chain length dependence of the energy parameters. This method was applied to ternary mixtures incorporating low to high molecular weight polymers. The method presented here well described the experimental observations using one or no adjustable parameters.  相似文献   

4.
This work was focused on the influence of match degree of structure parameters i.e. molecular size, volume and polarity (denoted as Rd, Vd and Pd) between imprinted cavities in Qu-MIP and Xn on the adsorption selectivity. The results presented that the influence of Rd on the adsorption selectivity was the largest and the most regular, while the influence of Pd was the smallest and the most irregular. Besides, the influence degree of Vd was decreased in general with the increase of Rd. However, as Rd was in the threshold of [0.99, 1.02], Vd would rise to the major influence factor. Furthermore, utilizing data obtained from experiment, the influence authority of Rd, Vd and Pd on the adsorption selectivity was calculated theoretically through multiple linear regression and principal component analysis of IBM SPSS Statistics 20, and results showed the authority order was Rd, Vd and Pd at any circumstance despite the value was different, which was in accordance with the result we directly inducted from the experiment.  相似文献   

5.
咪草烟分子印迹聚合物的制备及其选择性吸附性能的研究   总被引:1,自引:0,他引:1  
以丙烯酸为聚合单体,TMPTA为交联剂,AIBN为引发剂,咪草烟为模板分子,采用在低温光聚合的方法,制备了对咪草烟分子具有选择性识别能力的分子印迹聚合物.通过IR和HPLC表征,咪草烟分子印迹聚合物对咪草烟分子具有良好的识别作用.  相似文献   

6.
Molecular dynamics simulations were conducted to characterize the adsorption behavior of branched polyethylenimine (br‐PEI) on the surface of gold nanoparticles (AuNPs). We observed the preferential adsorption of br‐PEI on the [111] surface of AuNPs. Furthermore, br‐PEI maintained a flat arrangement on the surface and wrapped the AuNPs in a stable manner, thereby blocking the adsorption of H2O molecules and other free br‐PEI molecules. The model and computational results provide theoretical support for relevant experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
李云赫  洪新  高畅  牛晓青  唐克 《燃料化学学报》2019,47(10):1195-1204
制备了介孔MCM-41分子筛和三种杂原子(Zn、Ba和Ce)介孔MCM-41分子筛,通过X射线衍射(XRD)、红外光谱(FT-IR)、低温N_2吸附-脱附等手段对其进行表征,研究了几种介孔分子筛对氮含量为1732μg/g含喹啉模拟柴油的吸附脱氮性能。结果表明,所制备的几种分子筛均具有典型的介孔结构,且杂原子已进入到分子筛骨架中。利用Materials Studio软件构建介孔分子筛模型,模拟的XRD谱图与实验结果基本相符;进一步模拟了喹啉分子在杂原子介孔分子筛团簇上的吸附,计算了吸附能及被吸附分子和吸附中心的距离(d_((N-M)))。几种分子筛的吸附脱氮性能顺序依次为Zn-MCM-41 Ce-MCM-41 Ba-MCM-41 MCM-41;Zn-MCM-41的吸附性能最好,吸附能最大,吸附分子和吸附中心的距离d_((N-M))最小。吸附时间对杂原子介孔分子筛的吸附脱氮性能具有较大影响,而吸附温度的影响相对较小;Zn-MCM-41、Ba-MCM-41和Ce-MCM-41分子筛的最佳吸附时间分别为40、10和30 min,最佳吸附温度分别为40、30和40℃。  相似文献   

8.
Viscosity measurements had been made on poly(vinyl alcohol) (PVA), poly(N-vinyl-2-pyrrolidone) (PVP) and poly(ethylene oxide) (PEO) solutions down to low concentrations. It was found that defined as the flow time of the pure solvent in ideal conditions and obtained practically by extrapolating the flow time of polymer solution t to zero concentration, was not equal to the flow time of the pure solvent t0 measured. The reduced viscosity ηsp/C determined by (t/t0-1)/C exhibited either a drastic increase or a significant decrease with dilution, depending upon the polymer solution investigated. On the other hand, ηsp/C determined by was proportional to C even at low concentrations. The anomalous viscosity behavior of neutral polymer solutions at low concentrations, therefore, was due to the incorrect method by which ηsp/C was determined. The detailed experiments indicated that the effective diameter of the viscometer capillary, the surface property of the capillary wall and the additional pressure corresponding to the measurement of t and t0 for PVA, PVP and PEO solutions were not the same. Taking into account the contact anger and the surface tension of the liquid, together with the geometric parameter of the viscometer, the influence of the additional pressure upon the flow time measurement could be studied quantitatively. The calculation was in a good agreement with the experimental result. According to the method presented in this paper, the thickness of the adsorbed polymer layers on the capillary walls could be determined. It was noted that the thickness of the adsorbed polymer layers on the capillary walls was closely related to the solvent in which the polymer molecules were dissolved. The polymer molecular weight, however, had little or no effect on the thickness of the adsorbed polymer layers on the walls of the viscometer capillary.  相似文献   

9.
The resolution of photolithographic processes has advanced to the point that difficulties, such as line‐edge roughness, associated with phenomena occurring at molecular length scales are becoming important. In order to control these phenomena, it is necessary to understand them. To that end, a numerical model has been used to simulate the dissolution of phenolic polymers in aqueous base. The simulation applies the Critical Ionization Model to a rectangular‐lattice representation of the polymer matrix. The model has been adapted to describe the dissolution process that is responsible for photoresist function. Both continuum and molecular versions of the model are presented. The Continuum Model yields dissolution profiles that approximate the contours of the calculated spatial variations in chemical blocking (blocking profile). An algorithm has been developed to connect individual cells to form polymer chains, and to fill the lattice in a way that produces a Gaussian chain length distribution. The model employs only a single adjustable parameter, the time‐step correction factor (assuming one can measure the probability of ionization once a site encounters the developer). The Molecular Model predicts a dissolution rate that decreases non‐linearly with respect to degree of chemical blocking, as is observed experimentally. Dissolution profiles can be generated with the Molecular Model based either on this calculated dependence of the dissolution rate on blocking fraction or from direct application of the model to a blocking profile. The probabilistic nature of the model introduces edge roughness of the same degree as that observed experimentally. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2103–2113, 1999  相似文献   

10.
This study examines the contribution of electrostatic and polarization to the interaction energy in a variety of molecular complexes. The results obtained from the Kitaura-Morokuma (KM) energy decomposition analysis at the HF/6-31G(d) level indicate that, for intermolecular distances around the equilibrium geometries, the polarization energy can be determined as the addition of the polarization energies of interacting blocks, as the mixed polarization term is typically negligible. Comparison of KM and QM/MM results shows that the electrostatic energy determined in the KM method is underestimated (in absolute value) by QM/MM methods. The reason of such underestimation can be attributed to the simplified representation of treating the interaction between overlapping charge distribution by the interaction of a QM molecule with a set of point charges. Nevertheless, the polarization energies calculated by KM and QM/MM methods are in close agreement. Finally, a consistent, automated strategy to derive charge distributions that include implicitly polarization effects in pairwise, additive force fields is presented. The strategy relies in the simultaneous fitting of electrostatic and polarization energies computed by placing a suitable perturbing particle at selected points around the molecule. The suitability of these charges to describe molecular interactions is discussed.  相似文献   

11.
分子筛对葡萄糖淀粉酶的吸附性能研究   总被引:4,自引:0,他引:4  
测定了黑曲霉葡萄糖淀粉酶(E.C.3.2.1.3)在三种改性的、具有中孔和大孔的分子筛上的吸附等温线并将吸附量和吸附等温线的形状与分子筛的等电点、孔容、孔径及酸性相关联。讨论了孔结构和不同酶吸附量对分子筛固定化葡萄糖淀粉酶活力的影响。发现葡萄糖淀粉酶在再造孔分子筛上的单层饱和吸附量与再造孔的方法密切有关,三种不同再造孔方法制得的分子筛具有不同的骨架Si/Al比、不同的孔分布和比表面积。不同的Si/Al比导致不同的酸性质和等电点。酶吸附量与载体的表面酸性、等电点以及吸附时溶液的pH有关。分子筛对酶的吸附以静电作用为主。其次,当中孔孔径和孔容越大时,单层饱和吸附量亦越大。随着分子筛对葡萄糖淀粉酶的吸附量增加,固定化酶的活力增大,但固定化酶的比活力随吸附量的增加、中孔孔容和孔径的减小而下降。  相似文献   

12.
In this research, molecular imprinting polymers (MIPs) for D-arabinitol were synthesized using a bulk polymerization method through a noncovalent approach. The MIPs were prepared by using D-arabinitol as a template, acrylamide as a functional monomer, ethylene glycol dimethacrylateas cross-linker, benzoyl peroxide as an initiator and dimethyl sulfoxideas a porogen. MIPS was synthesized in several formulas with a different molar ratio of template to functional monomers and cross-linker. Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) were used to characterize the MIPs produced. A batch rebinding assay was used to test the binding efficiency of each formula. Batch rebinding test results revealed that MIPsF3 with a molar ratio of the template: monomer and crosslinker ratio respectively (1: 4: 25) had the highest binding capacity at 1.56 mgg -1 . The results of isotherm adsorption showed that the MIPs produced followed the Freundlich equation with an R-value of 0.97. The MIPs produced was also selective toward its isomeric compounds (i.e. L-arabinitol, adonitol, xylitol, and glucose). The extraction efficiency of the MIPs against D-arabinitol was 88.98%.  相似文献   

13.
One of the most formidable difficulties in the computer programming of molecular simulations is the sometimes complicated bookkeeping required for keeping track of internal coordinates and their derivatives. A completely general method for keeping track of stretch (two-body), bend (three-body), and torsion, wag, and other four-body interactions for ANY bond network is presented. Computer code using this method for calculating internal coordinates and their derivatives can be used for completely different types of bond networks, no matter how complex, with little or no modification. The method is designed to incorporate recent improved formulas for calculating internal coordinates and their derivatives to ensure the most optimal calculation sequence. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1513–1522, 1997  相似文献   

14.
Coarse-grained molecular dynamics simulations of stacks of two-dimensional platelets immersed in a polymer melt were performed to investigate aspects of the polymer matrix that promote the formation of intercalated or exfoliated nanocomposite structures. Such factors include temperature, copolymer architecture, and blend composition. Increasing the polymer-sheet attractive interaction led to binding of the sheets, where individual beads simultaneously attract two neighboring sheets, thus kinetically blocking intercalation by occupying the perimeter of the affected gallery. Polymers with a small polymer-sheet attraction, but having a strongly attractive chain end (end-functionalized polymers) minimized the bonding of adjacent sheets. These systems exhibited some sheet sliding because a majority of the confined polymer beads only interacted weakly with adjacent sheets; however, the number density of intercalated polymer was low. Mixtures of end-functionalized and nonfunctionalized polymers, however, yielded better intercalation efficiency. For the mixed system, the reduced number of highly attractive beads provided sufficient interaction for intercalation to occur, enabling greater intercalation rates, less sheet-bridging, and incorporation of the nonfunctionalized polymers into the galleries. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3272–3284, 2003  相似文献   

15.
We performed simulations of the physical adsorption of a single globular chain on a surface of hemispherical shape by means of molecular dynamics simulations. For the chain, we took advantage of a united atom model. Interactions within the chain were limited to stretching, bending, and torsional as well as nonbonded interactions between the nonadjacent atoms. The interaction between each chain element and the surface formation are reigned by a Lennard–Jones potential. In this article, we focused on differences in the behavior of the adsorbed globule to the free unadsorbed one particularly in two different zones of the immediate vicinity of the surface. There were strong indications for a localized acceleration of the dynamics as compared with the bulk that appears in an increase of trans–gauche switches. For explanation we came up with an adsorption scenario. Special attention was given to the shift of the percentage of trans and gauche conformations within the globule in dependence on the strength of the adsorption potential that might be related to crystallization or glass transition. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2333–2339, 2001  相似文献   

16.
17.
The voltage holding ratio (VHR) of an active-matrix liquid crystal display (AMLCD) is a significant parameter because the image quality of the AMLCD decreases in case of low VHR. In some cases, the VHR of the LC cell, which is a prototype of the AMLCD, is decreased under an environment of high humidity and temperature. In order to restrict the significant decrease in the VHR, we proposed an LC cell with the polymer layer produced from the monomer 1-acryloyl-oxy-5-acryloyl-amino-naphthalene (1-AO-5-AANp). The LC cell exhibited comparably high VHR after being placed in an environment of high humidity and temperature. We presume that water molecules would be effectively adsorbed onto the polymer layer carrying the amide group, leading to a restriction of the significant decrease in VHR.  相似文献   

18.
A realistic representation of water molecules is important in molecular dynamics simulation of proteins. However, the standard method of solvating biomolecules, that is, immersing them in a box of water with periodic boundary conditions, is computationally expensive. The primary hydration shell (PHS) method, developed more than a decade ago and implemented in CHARMM, uses only a thin shell of water around the system of interest, and so greatly reduces the computational cost of simulations. Applying the PHS method, especially to larger proteins, revealed that further optimization and a partial reworking was required and here we present several improvements to its performance. The model is applied to systems with different sizes, and both water and protein behaviors are compared with those observed in standard simulations with periodic boundary conditions and, in some cases, with experimental data. The advantages of the modified PHS method over its original implementation are clearly apparent when it is applied to simulating the 82 kDa protein Malate Synthase G. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

19.
沈瑜 《高分子科学》2010,28(5):789-799
<正>Elastic behavior of 4-branched star polymer chain with different chain length N adsorbed on attractive surface is investigated using steered molecular dynamics(SMD) simulation method based on the united-atom(UA) model for branched alkanes.The simulation is realized by pulling up the chain via a linear spring with a constant velocity v = 0.005 nm/ps.At the beginning,the chain lies extensionally on adsorbed surface and suffers continuous deformations during the tensile process.Statistical parameters as mean-square radii of gyration S~2_(xy),S~2_z,shape factor δ,describing the conformational changes,sectional density den which gives the states of the chain,and average surface attractive energy U_a,average total energy U,average force f probed by the spring,which characterize the thermodynamic properties, are calculated in the stimulant process.Remarkably,distinguishing from the case in linear chains that there only exists one long plateau in the curve of f,the force plateau in our study for star chains is multiple,denoting different steps of desorption,and this agrees well with the experimental results in essence.We find during the tensile process,there are three characteristic distances Z_c,Z_t and Z_0 from the attractive surface,and these values vary with N.When Z=Z_c,the chain is stripped from the surface,but due to the form of wall-monomer interaction,the surface retains weak influence on the chain till Z = Z_c.From Z=Z_t,parameters U_a,U and f respectively reach a stable value,while the shape and the size of the chain still need adjustments after Z_t till Z_0 to reach their equilibrium states.Specifically,for short chain of N= 41,Z_t and Z_0 are incorporated.These results may help us to deepen the knowledge about the elastic behavior of adsorbed star polymer chains.  相似文献   

20.
利用Materials Studio2017模拟软件构建了蒙脱石、高岭石、方解石和生石膏四种矿物质分子模型。采用巨正则蒙特卡洛(GCMC)方法和分子动力学(MD)方法对四种模型的吸附量和吸附热进行了模拟计算。研究表明,相同温度和压力条件下四种矿物质对CH_4和CO_2分子吸附量大小为:蒙脱石高岭石生石膏方解石;CH_4和CO_2分子的单组分吸附量随压力的增大而增大,两种气体吸附均符合Langmuir吸附规律;四种矿物质对CH_4和CO_2分子的等量吸附热均小于42 k J/mol,即为物理吸附;随着温度的升高,CH_4和CO_2分子的吸附量和吸附热均减小,且CH_4和CO_2分子的等量吸附热和等温吸附量之间呈良好的正相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号