首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new methyl-tris(pyrazolyl)borate reagents Li[MeTpPh] (1) [MeTpPh] = MeB(3-Ph-pyrazolyl)3) and Tl[MeTpPh] (2) react with TiCl4 to afford (MeTpPh)TiCl3 (3) in 77% and 81% yield respectively. 2 reacts with ZrCl4 and HfCl4 to yield mixtures of products. The reaction of 1 with TiCl3(THF)3 proceeds with B-N bond cleavage to afford TiCl3(3-Ph-pyrazole)(THF)2 as the major product (30%). The reaction of 3 with MeLi (3 equiv) yields 1 (60%) and reduced Ti species, via apparent displacement of [MeTpPh] and generation of unstable TiCl4Me4−x species. Under MAO activation conditions (MAO = methylalumoxane), 3 polymerizes ethylene to linear polyethylene. 3/MAO is significantly more active in ethylene polymerization than the hydrido-tris(pyrazolyl)borate analogue {HB(3-Ph-pyrazolyl)3}TiCl3/MAO.  相似文献   

2.
Three silyl-substituted titanium trichloride complexes [CpSi(CH3)2X]TiCl3 [X=Cl(1), Me(2), PhOMe(3)] were tested as catalyst precursors for the syndiospecific polymerization of styrene. The catalytic activity increased in the order 1 > 2 > 3. The highest activity was 2.42 × 107 g s-PS/mol Ti mol S h using complex 1/MAO catalytic system at molar ratio of Al/Ti=2000. The effects of variation on polymerization temperature and Al/Ti ratio on the polymerization of styrene were also studied.  相似文献   

3.
(Phosphinoamide)(cyclopentadienyl)titanium(IV) complexes of the type Cp*TiCl22-Ph2PNR) [Cp*=C5Me5; R = t-Bu (2a), R = n-Bu (2b), R = Ph (2c)] have been prepared by the reaction of Cp*TiCl3 with the corresponding lithium phosphinoamides. The structure of Cp*TiCl22-Ph2PNtBu) (2a) and Cp*TiCl22-Ph2PNPh) (2c) have been determined by X-ray crystallography. These complexes exhibited moderate catalytic activities for ethylene polymerization in the presence of modified methylaluminoxane (MMAO). Catalytic activity of up to 2.5 × 106 g/(mol Ti h) was observed when activated by i-Bu3Al/Ph3CB(C6F5)4.  相似文献   

4.
1,2-Propandiol reacts with Cp*Ti(CH3)3 by rapid liberation of methane to yield a dimetallic complex 6 of the net composition (Cp*Ti)2(1,2-propandiolato)3. The X-ray crystal structure analysis revealed an unsymmetrical bridging between the [Cp*Ti(1,2-propandiolato)] and [Cp*Ti(1,2-propandiolato)2] subunits. Cp*TiCl3 reacts with 1,2-propandiol in a 1:1 stoichiometry in the presence of excess pyridine by replacement of two chlorides by a 1,2-propandiolato ligand. The resulting product was isolated as a dimer 8 and characterized by X-ray diffraction. It exhibits a central Ti2O2 ring that was formed by bridging between the two [Cp*TiCl(1,2-propandiolato)] subunits using the oxygen atoms of the primary end of the ligand. From the reaction mixture a more complicated condensation product 9 was isolated in a small yield that contains two [Cp*TiCl(1,2-propandiolato)] units connected in a similar way by a Cp*-free [Ti(1,2-propandiolato)2] moiety as revealed by its X-ray crystal structure analysis. Complex [Cp*TiCl(1,2-propandiolato)]2 (8) gives an active catalyst for the syndiotactic polymerization of styrene upon treatment with excess methylalumoxane in toluene solution.  相似文献   

5.
Five substituted cyclopentadienyl titanium trimethoxide complexes, RCpTi(OMe)3 (R=Me (2b), iPr (2c), Me3Si (2d), allyl (2e), PhCH2 (2f)), were prepared. By reacting RCpTi(OMe)3 with BF3OMe2, six RCpTiF2(OMe) (R=H (3a), Me (3b), iPr (3c), Me3Si (3d), allyl (3e), PhCH2 (3f)) were obtained. When activated with methylaluminoxane (MAO), the activities of RCpTiF2(OMe) system were less than those of RCpTi(OMe)3 system in solution polymerization of styrene, but the polymers made by RCpTiF2(OMe) exhibited higher Mw and melting point than those by RCpTi(OMe)3. Both systems produced polymers with similar syndiotacticities in the range 92.4-97.6%. Introduction of a substituent group into the Cp-ligand enhanced the melting points of the polymers, and meanwhile decreased the catalytic activities of RCpTi(OMe)3/MAO and RCpTiF2(OMe)/MAO systems, where the order of activity was RCp=Cp > MeCp > iPrCp > Me3SiCp > CH2CHCH2Cp > PhCH2Cp. Complexes 2a (CpTi(OMe)3) and 3a showed the highest activities respectively for both systems, and are three to four times more active than CpTiCl3. In bulk polymerization, the difference of activities between RCpTi(OMe)3/MAO and RCpTiF2(OMe)/MAO systems became small, where complexes 2e and 3e exhibited remarkably higher activities compared with their solution polymerization activities. The maximum polymerization activities were found at the polymerization temperature of 50 °C for most of the complexes. The influence of the polymerization time (tP), polymerization temperature (TP) and Al/Ti ratio on the activities of complexes 2b and 3b were investigated. It was observed that the initial rate of propagation of complex 2b was higher than that of complex 3b and the highest activities of both catalysts were reached at the relatively low Al/Ti ratio of 150 and decrease for larger ratios.  相似文献   

6.
Tris(4-hydroxy-3,5-diisopropylbenzyl)amine (LH3) was synthesized by the reaction of 2,6-diisopropylphenol and hexamethylenetetramine in the presence of p-toluenesulfonic acid or paraformaldehyde. Its solid state structure was determined by single crystal X-ray diffraction. Its fully deprotonated specie, (4-O-3,5-i-Pr2PhCH2)3N (L), was used to form novel trinuclear half-sandwich titanocene complexes, namely [(η5-C5Me5)TiCl2]3L (1) and [(η5-C5Me5)Ti(OMe)2]3L (2), which were then tested for the syndiospecific polymerization of styrene in the presence of methylaluminoxane (MAO) cocatalyst. Their catalytic properties were directly compared with those of trichloro(pentamethylcyclopentadienyl)titanium(IV) (3) and dichloro(2,6-diisopropylphenolato)(pentamethylcyclopentadienyl)titanium(IV) (4). 1/MAO and 2/MAO systems showed higher activities towards styrene polymerization than the mononuclear catalytic systems 3/MAO and 4/MAO, giving syndiotactic polystyrene of high molecular weight.  相似文献   

7.
Addition of R′2PCl to anilines substituted with di- or trimethylcyclopentadienyl unit at ortho-position affords ortho-phenylene-bridged Me2Cp or Me3Cp/phosophinoamide ligands, 2-(RMe2C5H2)C6H4NHPR′2 (R = Me or H; R′ = Ph, iPr, or Cyclohexyl). Successive addition of Ti(NMe2)4 and Me2SiCl2 to the ligands affords the desired dichlorotitanium complexes, [2-(η5-RMe2C5H)C6H4NPR′ 2κ2N,P]TiCl2 (R = H, R′ = Ph, 9; R = Me, R′ = Ph, 10; R = H, R′ = iPr, 11; R = Me, R′ = iPr, 12; R = H, R′ = Cy, 13; R = Me, R′ = Cy, 14). By using Zr(NMe2)4 instead of Ti(NMe2)4, a zirconium complex, [2-(η5-Me3C5H)C6H4NP(iPr)2κ2N,P]ZrCl2 (15) is prepared. Molecular structures of 10, 14 and [2-(η5-Me2C5H2)C6H4NPPh2κN]Ti(NMe2)2 (16) were determined. The metric parameters determined on the X-ray crystallographic studies and the chemical shifts of the 31P NMR signal indicate that the phosphorous atom coordinates to the titanium in the dichloro-complexes 9-15. The titanium and zirconium complexes show negligible activity in ethylene and ethylene/1-hexene (co)polymerization when activated with MAO or iBu3Al/[Ph3C][B(C6F5)4].  相似文献   

8.
Cp*2ZrH2 (1) (Cp*: pentamethylcyclopentadienyl) reacts with cyclic perfluorinated olefins to give Cp*2ZrHF (2) and hydrodefluorinated products under very mild conditions. Initial C-F bond activation occurs selectively at the vinylic positions of the cycloolefin to exchange fluorine for hydrogen. Several mechanisms are discussed for this H/F exchange: (a) olefin insertion/β-fluoride elimination, (b) olefin insertion/α-fluoride elimination, and (c) hydride/fluoride σ-bond metathesis. Following H/F σ-bond metathesis exchange of both vinylic C-F bonds of perfluorocyclobutene, 1 then reacts with allylic C-F bonds by insertion/β-fluoride elimination. A similar sequence is observed with perfluorocyclopentene. Cp*2ZrHF reacts selectively with vinylic C-F bonds of perfluorocyclobutene to give 3,3,4,4-tetrafluorocyclobutene and Cp*2ZrF2 without further hydrodefluorination occurring. In the presence of excess 1 and H2, perfluorocyclobutene and perfluorocyclopentene are reduced to cyclobutane and cyclopentane in 46% and 16% yield, respectively. DFT calculations exclude the pathway by way of the olefin insertion/α-fluoride elimination and suggest that the pathway by way of hydride/fluoride σ-bond metathesis is preferred.  相似文献   

9.
Reaction of [RhCl2Cp*]2 (Cp* = η-C5Me5) with salicyloxazolines in the presence of NaOMe gives complexes [RhCl(R-saloxaz)Cp*] (1-4) which have been fully characterised. The diastereoselectivity of complexation depends on the substituents and the absolute configuration at the metal centre is unstable in solution. Treatment of 2 with 4-methylpyridine and NaSbF6 in methanol at reflux gave [Rh(4-Mepy){(S)-iPr-saloxaz}Cp*][SbF6] (5) whilst [Rh(OH2)(Me2-saloxaz)Cp*][SbF6] (6) was prepared by reaction of 1 with AgSbF6. Three complexes, [RhCl(Me2-saloxaz)Cp*] (1), [RhCl{(S)-iPr-saloxaz}Cp*] (2), and [Rh(OH2)(Me2-saloxaz)Cp*][SbF6] (6) have been characterised by X-ray crystallography. Some of the complexes, after treatment with AgSbF6, have been tested as enantioselective catalysts for the Diels-Alder reaction of methacrolein with cyclopentadiene.  相似文献   

10.
Ligand effects on the catalytic activity [and norbornene (NBE) incorporation] for both ethylene polymerization and ethylene/NBE copolymerization using half-titanocenes (titanium half-sandwich complexes) containing ketimide ligand of type Cp′TiCl2[NC(R1)R2] [Cp′ = Cp (1), C5Me5 (Cp, 2); R1,R2 = tBu,tBu (a), tBu,Ph (b), Ph,Ph (c)]-methylaluminoxane (MAO) catalyst systems have been investigated. CpTiCl2[NC(tBu)Ph] (1b) CpTiCl2(NCPh2) (1c), and CpTiCl2(NCPh2) (2c) were prepared and identified; the structure of CpTiCl2(NCPh2) (2c) was determined by X-ray crystallography. The catalytic activity for ethylene polymerization increased in the order: 1a > 1b > 1c, suggesting that an electronic nature of the ketimide ligand affects the activity. However, molecular weight distributions for resultant (co)polymers prepared by 1b,c and by 2c-MAO catalyst systems were bi- or multi-modal, suggesting that the ketimide substituent plays a key role in order for these (co)polymerizations to proceed with single catalytically-active species. CpTiCl2(NCtBu2) (1a) exhibited both remarkable catalytic activity and efficient NBE incorporation for ethylene/NBE copolymerization.  相似文献   

11.
The reaction of the anion [(tBuP)3As] (1) with Me2SiCl2 results in nucleophilic substitution of the Cl anions, giving the di- and mono-substituted products [Me2Si{As(PtBu)3}2] (3a) and [Me2Si(Cl){As(PtBu)3}] (3b). Analogous reactions of the pre-isolated [(CyP)4As] anion (2) (Cy = cyclohexyl) with Me2SiCl2 produced mixtures of products, from which no pure materials could be isolated. However, reaction of 2 [generated in situ from CyPHLi and As(NMe2)3] gives the heterocycle [(CyP)3SiMe2] (4). The X-ray structures of 3a and 4 are reported.  相似文献   

12.
[Na{Ti2(C5Me5)2F7}] (1) was prepared from sodium fluoride and [{Ti(C5Me5)F3}2] [H.W. Roesky, et al., Angew. Chem. Int. Ed. Engl. 31 (1992) 864-866]. The solid-state 1 consists of a polymeric chain of two rows of dititanate anions [Ti2(C5Me5)2F7] connected by sodium ions in the middle of the chain. Each sodium ion is coordinated by five fluorine atoms from three [Ti2(C5Me5)2F7] anions. The variable-temperature 19F NMR of CD3CN solution of 1 revealed interconversions of monomeric species [Na(CD3CN)n{Ti2(C5Me5)2F7}] (1solv) with different number of CD3CN ligands on the sodium ion. The addition of HMPA to the CD3CN solution of 1 allows 19F NMR observation of 1·HMPA (1a) and 1·HMPA·CD3CN (1b) in the slow exchange. The solid-state structure of [NaTi6(C5Me5)5F20(H2O)]·(THF) (2·THF) reveals the sodium ion coordinated by four fluorine atoms from the anion [Ti2(C5Me5)2F7] and by three fluorine atoms from the cluster [Ti4(C5Me5)3F13(H2O)].  相似文献   

13.
A series of reactivity studies of the carboamination pre-catalyst [Ti(NMe2)3(NHMe2)][B(C6F5)4] as well as the preparation of other catalysts are reported in this work. Treatment of [Ti(NMe2)3(NHMe2)][B(C6F5)4] with the aldimines Ar′NCHtol (Ar′ = 2,6-Me2C6H3, tol = 4-MeC6H4), and depending on the reaction conditions, results in isolation of [Me2NCHR′][B(C6F5)4] (1) or (Me2N)2CHtol, as well as the asymmetric titanium dimer [(Me2N)2(HNMe2)Ti(μ2-N[2,6-Me2C6H3])2Ti(NHMe2)(NMe2)][B(C6F5)4] (2). Protonation of CpTi(NMe2)3 and CpTi(NMe2)3 results in isolation of the salts, [CpTi(NMe2)2(NHMe2)][B(C6F5)4] (3) and [CpTi(NMe2)2(NHMe2)][B(C6F5)4] (4), respectively. Treatment of compounds 3 or 4 with H2N[2,6-iPr2C6H3] results in formation of the imido salts [CpTi(N[2,6-iPr2C6H3])(NHMe2)2][B(C6F5)4] (5) (58% yield) or [CpTi(N[2,6-iPr2C6H3])(NHMe2)2][B(C6F5)4] (6). When Ti(NMe2)4 is treated with [Et3Si][B(C6F5)4], the salt [Ti(NMe2)3(N[SiEt3]Me2)][B(C6F5)4] (7) is obtained, and treatment of the latter with [2,6-iPr2C6H3]NCHtol produces the imine adduct [Ti(NMe2)31-[2,6-iPr2C6H3]NCHtol)][B(C6F5)4] (8). The carboamination catalytic activity of complexes 2-7 was investigated and compared to [Ti(NMe2)3(NHMe2)][B(C6F5)4]. Likewise, a proposed mechanism to the active carboamination catalyst stemming from [Ti(NMe2)3(NHMe2)][B(C6F5)4] is described.  相似文献   

14.
A novel metallocene catalyst was prepared from the reaction of (η3‐pentamethylcyclopentadienyl)dimethylaluminum (Cp*AlMe2) and titanium(IV) n‐butoxide Ti(OBu)4. The resulting titanocene Cp*Ti(OBu)3 was combined with methylaluminoxane (MAO)/tri‐iso‐butylaluminum (TIBA) to carry out the syndiotactic polymerization of styrene. The resulting syndiotactic polystyrene (sPS) possesses high syndiotacticity according to 13C NMR. Catalytic activity and the molecular weight of the resulting sPSs were discussed in terms of reaction temperature, concentration of MAO, amounts of scavenger TIBA added, and the hydrogen pressure applied during polymerization.  相似文献   

15.
The electronic features and photochemistry of TpTiCl3 (1) (Tp = hydrotris(pyrazol-1-yl)borate) and Tp*TiCl3 (2) (Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate) were studied in THF. Reactive decay of the excited states produced either (or ) and metal center Ti(III) radicals via homolytic cleavage of the Tp → Ti (Tp* → Ti) bond. Cleavage of the Tp → Ti and the Tp* → Ti bond as a primary photoprocess is shown to be consistent with LMCT Tp → Ti and Tp* → Ti excitation. TpTiCl2(THF) (3) and Tp*TiCl2(THF) (4) were also prepared by stoichiometric reduction of 1 and 2 with Li3N. The THF ligand in 3 and 4 was replaced by the stable nitroxyl radical TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) to provide the new complexes TpTiCl2(TEMPO) (5) and Tp*TiCl2(TEMPO) (6) in which the TEMPO ligand is η1 coordinated to Ti(IV). Photolysis of 5 and 6 generate Ti(III) and the TEMPO radical in the primary photochemical step.  相似文献   

16.
Polymerization of vinyl chloride (VC) with titanium complexes containing Ti‐OPh bond in combination with methylaluminoxane (MAO) catalysts was investigated. Among the titanium complexes examined, Cp*Ti(OPh)3/MAO catalyst (Cp*; pentamethylcyclopentadienyl, Ph; C6H5) gave the highest activity for the polymerization of VC, but the polymerization rate was slow. From the kinetic study on the polymerization of VC with Cp*Ti(OPh)3/MAO catalyst, the relationship between the Mn of the polymer and the polymer yields gave a straight line, and the line passed through the origin. The Mw/Mn values of the polymer gradually decrease as a function of polymer yields, but the Mw/Mn values were somewhat broad. This may be explained by a slow initiation in the polymerization of VC with Cp*Ti(OPh)3/MAO catalyst. The results obtained in this study demonstrate that the molecular weight control of the polymers is possible in the polymerization of VC with the Cp*Ti(OPh)3/MAO catalyst. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3872–3876, 2007  相似文献   

17.
Reactions of Me5Al3[OC(C6H5)2C(C6H5)2O]2 (1) with alcohols ROH (R = Me, Et, tBu) in a 1:1 molar ratio afforded the compound Me2Al2[OC(C6H5)2C(C6H5)2O]2(C4H8O) (2) and a mixture of methylaluminum alkoxides. The alcohols acted as the factor formally eliminating a molecule of Me3Al (as a methylaluminum alkoxide) from compound 1. tBu3Al reacted with an equimolar amount of benzopinacol to form the monomeric complex tBuAl[OC(C6H5)2C(C6H5)2O](C4H8O) (3). Reactions of Me3Ga and Me3In with benzopinacol yielded trinuclear complexes Me5M3[OC(C6H5)2C(C6H5)2O]2 (4 (M = Ga), 5 (M = In)), isostructural to compound 1. In the presence of water and alcohols, compounds 4 and 5 underwent a decomposition reaction to benzopinacol and a mixture of metalloxanes and alkoxides. An unusual methylmethoxo indium benzopinacolate Me6In4[OC(C6H5)2C(C6H5)2O]2(OCH3)2 (6) was obtained in the reaction of benzopinacol with Me3In and Me2InOMe in a 1:1:1 molar ratio. Molecular structures of the compounds 3, 4 and 6 were determined by X-ray crystallography.  相似文献   

18.
The reaction of 2,6-diethyl-4,8-dimethyl-s-indacenyl-dilithium (Li2Ic′) with [Cp*RuCl]4 gives the organometallic binuclear bis-pentamethylcyclopentadienyl-ruthenium-s-indacene complex, [{Cp*Ru}2Ic′] (1, Ic′ = 2,4-diethyl-4,8-dimethyl-s-indacene), in high yields. The subsequent oxidation of 1 with a ferricinium salt ([Fc]+[BF4]) gives the mixed valence compound [{Cp*Ru}2Ic′]+[BF4] (1+). Compound 1 was structurally characterized by X-ray crystallography, finding that both {Cp*Ru} fragments are coordinated to opposite sites of the Ic′ ligand. The structural and electronic features of 1 and 1+ have been rationalized by Density Functional Theory (DFT) calculations, which suggest that both metallic centers get closer to the Ic′ and subtle electronic reorganizations occurs when chemical oxidation takes place. Cyclic voltammetry and ESR experiments suggest a high electronic interaction between the metallic centers mediated by the Ic′ bridging ligand. Time dependent DFT (TD-DFT) calculations were carried out to understand and assign the intervalence band present in the mixed-valent specie (1+). The main achievement of this article is to feature the relationship of the experimental data with the computational results obtained with the Amsterdam Density Functional package (ADF). Both experimental and theoretical facts demonstrate that the mixed valence system (1+) is a delocalized one, and it can be classified as a Class III system according to the Robin & Day classification.  相似文献   

19.
The reaction between RuCl(dppe)Cp* and Me3SiCCC(SiMe3)NNHTs has given the pyrazole derivative (1), which was characterised by a single-crystal X-ray structure determination. Complex 1 is probably formed by attack of the NTs group on the π-complexed desilylated alkyne, with concomitant loss of a proton.  相似文献   

20.
o-Phenylene-bridged trimethylcyclopentadienyl/amido titanium complexes [(η5-2,3,5-Me3C5H)C6H4NR-κN]TiCl2 (18, R = CH3; 19, R = CH2CH3; 20, R = CH2C(CH3)3; 21, R = CH2(C6H11)) and zirconium complexes {[(η5-2,3,5-Me3C5H)C6H4NR-κN]ZrCl-μCl}2 (22, R = CH3; 23, R = CH2CH3; 24, R = CH2C(CH3)3; 25, R = CH2(C6H11); 26, R = C6H11; 27, R = CH(CH2CH3)2) are prepared via a key step of the Suzuki-coupling reaction between 2-dihydroxyboryl-3-methyl-2-cyclopenten-1-one (2) and the corresponding bromoaniline compounds. The molecular structures of titanium complexes 18 and 19 and dinuclear zirconium complexes 24 and 26 were confirmed by X-ray crystallography. The Cp(centroid)-Ti-N and Cp(centroid)-Zr-N angles are smaller, respectively, than those observed for the Me2Si-bridged complex [Me2Si(η5-Me4C5)(NtBu)]TiCl2 and its Zr-analogue, indicating that the o-phenylene-bridged complexes are more constrained than the Me2Si-bridged complex. Titanium complex 19 exhibits comparable activity and comonomer incorporation to the CGC ([Me2Si(η5-Me4C5)(NtBu)]TiCl2) in ethylene/1-octene copolymerization. Complex 19 produces a higher molecular-weight polymer than CGC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号