首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Rat kangaroo (Potorous tridactylus) cells have an efficient repair system for photoreactivation of lethal lesions induced by 254 nm UV. However, this ability is lost with increasing time after UV, being completely ineffective after 24 h. Critical events leading to UV-induced cell death must occur within this period of time. DNA synthesis was inhibited by the DNA polymerase inhibitor aphidicolin and the loss of the capability to photorepair lethal lesions was maintained as for replicating cells. Similar data were obtained in synchronized cells UV irradiated immediately before S phase. Under the same conditions, the ability to remove cyclobutane pyrimidine dimers by photoreactivation in these cells remained unchanged 24 h after irradiation. These data indicate that the critical events responsible for UV-induced cell death occur in the absence of DNA replication.  相似文献   

2.
A86 Xenopus cells, cloned from a Xenopus line that exhibited a high level of photoreactivation of UV-induced lethal damage, and V79M1 hamster cells, cloned from a hamster line that did not exhibit efficient photoreactivation of such damage, were fused to produce the V79M1 x A86 cell line--a hybrid line in which approximately 84% of the cells contained the entire V79M1 and A86 genomes. Ultraviolet and UV plus photoreactivation fluence-survival relations were then determined and compared for hybrid and parental G1 phase cells in a first attempt to elucidate interactions of the parental genetic potentials for photoreactivation in the hybrid. Specifically, it was anticipated that the combined V79M1 and A86 genomes in the hybrid would produce photoreactivating enzymes sufficient to efficiently photoreactivate UV-induced lethal damage in both A86 and V79M1 DNA and little difference would be observed in the levels of photoreactivation exhibited by V79M1 x A86 and A86 G1 phase cells. To the contrary, the level of photoreactivation observed for the hybrid did not closely approach that observed for the A86 line. To assist in the interpretation of this somewhat unexpected observation, three additional studies were performed: (1) comparison of 'optimal' schemes for photoreactivation of UV-induced lethal damage in the hybrid and parental G1 phase cells, (2) comparison of the effects of some different types of growth medium on photoreactivation of UV-induced lethal damage in hybrid and parental G1 phase cells, and (3) comparison of the levels of photoreactivation of UV-induced chromatid deletions in the V79M1 and A86 chromosomes of G1 phase hybrid cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
It has been reported that UV-induced immunosuppres-sion can be reversed by photoreactivation or exposure to T4 endonuclease V, two treatments that can repair cyclobutane pyrimidine dimers. These observations, together with the known role of urocanic acid (UA) in UV-induced immune suppression, prompted us to study the ability of DNA photolyase to repair UA-DNA cyclobutane photoadducts in single-stranded calf thymus DNA. We did not detect any release of UA, with a sensitivity implying that photolyase is at least 2900 times less active toward UA-DNA adducts than toward cis-syn thyminethymine dimers. This indicates that any reversal of photoimmunosuppression by photoreactivation cannot significantly involve cleavage of UA-DNA cyclobutane adducts.  相似文献   

4.
Abstract— Splitting of thymine-containing dimers was compared quantitatively with photoreactivation (PR) of killing induced by ultraviolet radiation (254 nm) in a uvrA (excisionless) strain of E. coli. Immediately after irradiation, the splitting rate (number of dimers split/genome/unit PR dose) agreed well with the PR rate of the cells (rate of recovery from photoreactivable lethal damage converted into an ‘estimated’ number of dimers split/genome/unit PR dose). After 4 h of incubation of cells in nutrient medium, the maximal fraction of splittable dimers decreased, as did the maximal fraction of photoreactivable lethal damage. However, the initial splitting rate after incubation was equal to that before incubation. During the 4-h incubation, the heavily irradiated uvrA cells did not divide but became filamentous and their DNA increased about 70 per cent. It is concluded that roughly half of the dimers in DNA that has replicated after ultraviolet irradiation are split as efficiently as those in DNA that has not replicated.  相似文献   

5.
6.
Abstract— Cultured cells derived from a goldfish were irradiated with 254nm ultraviolet light. Cell survival and splitting of pyrimidine dimers after photoreactivation treatment with white fluorescent lamps were examined by colony forming ability and by a direct dimer assay, respectively. When UV-irradiated (5 J/m2) cells were illuminated by photoreactivating light, cell survival was enhanced up to a factor of 9 (40min) followed by a decline after prolonged exposures. Exposure of UV-irradiated (15 J/m2) cells to radiation from white fluorescent lamps reduced the amounts of thymine-containing dimers in a photoreactivating fluence dependent manner, up to about 60% reduction at 120 min exposure. Keeping UV-irradiated cells in the dark for up to 120min did not affect either cell survival or the amount of pyrimidine dimers in DNA, indicating that there were not detectable levels of a dark-repair system in the cells under our conditions. Correlation between photoreactivation of colony forming ability and photoreactivation of the pyrimidine dimers was demonstrated, at least at relatively low fluences of photoreactivating light.  相似文献   

7.
Abstract—The influence of photoreactivating light on the fate of UV-induced DNA damage has been measured in the epidermis of hairless mice using damage-specific endonuclease from Micrococcus luteus. Groups of mice were exposed to varying fluences of UV at 297nm or from an FS40 fluorescent sun lamp to induce UV photoproducts. The same fluence-dependent DNA damage was observed in high molecular weight epidermal DNA regardless of whether the mice were killed immediately, or maintained in the dark or under photoreactivating light for 20 h after UV. Thus, no detectable photoreactivation of UV-induced pyrimidine dimers could be demonstrated in mouse epithelial cells in vivo.  相似文献   

8.
Abstract—An excision-deficient E. coli strain carrying the R46 mutator plasmid showed a different response towards photo-reactivation after UV irradiation than the same strain without plasmid. While the photoreactivation of lethal lesions was comparable in both strains, the number of UV-induced mutants per 106 survivors was slightly reduced for the plasmid bearing strain by photoreactivating light at UV fluences below 60 mJ/m2 but increased at higher fluences. To explain this it is proposed that some UV photoproduct(s) of DNA other than cyclobutane dipyrimidine dimers are pre-mutational lesions for error-prone DNA repair by the plasmid, P-repair, but not for SOS-repair.  相似文献   

9.
Photoreactivation in the yeast Schizosaccharomyces pombe   总被引:2,自引:0,他引:2  
Abstract— Visible light (VL) illumination of u.v.-irradiated cells of the fission yeast Schizosaccharomyces pombe does not increase the survival of wild-type cells, but does increase the survival of some specific UVS strains. This photoreactivation has been studied in the U VS 1,1 mutant in the stationary growth phase.
  • 1 It is not dependent on temperature during VL illumination.
  • 2 The effect of pre-u.v. or post-u.v. illumination on survival is the same.
  • 3 There is an overlap of photoreactivation and liquid holding recovery.
  • 4 VL does increase the growth delay after irradiation. It is concluded from these results that the photoreactivation is not due to a photoreactivating enzyme, but to an indirect process. The existence in this yeast of two different repair pathways of u.v. lesions has been demonstrated previously. The study of indirect photoreactivation in different strains, blocked in one or the other repair pathway by mutation or by a repair inhibitor (caffeine), leads to the conclusion that the VL treatment favours only one of these two repair mechanisms, which is presumably the excision-repair pathway. The strain UVS A, which would repair u.v. lesions by a recombinational mechanism, does not show any photoreactivation.
  相似文献   

10.
Abstract— The survival curve obtained after UV irradiation of the unicellular cyanobacterium Synecho-cystis is typical of a DNA repair competent organism. Inhibition of DNA replication, by incubating cells in the dark, increased resistance to the lethal effects of UV at higher fluences. Exposure of irradiated cells to near ultraviolet light(350–500 nm) restored viability to pre-irradiation levels. In order to measure DNA repair activity, techniques have been developed for the chromatographic analysis of pyrimidine dimers in Synechocystis. The specificity of this method was established using a haploid strain of Sacchar-omyces cerevisiae. In accordance with the physiological responses of irradiated cells to photoreactivating light, pyrimidine dimers were not detected after photoreactivation treatment. Incubation of irradiated cells under non-photoreactivating growth conditions for 15 h resulted in complete removal of pyrimidine dimers. It is concluded that Synechocystis contains photoreactivation and excision repair systems for the removal of pyrimidine dimers.  相似文献   

11.
In situ PYRIMIDINE DIMER DETERMINATION BY LASER CYTOMETRY   总被引:1,自引:0,他引:1  
By using antiserum against pyrimidine dimers and argon-laser imaging microspectrofluorometry, we established a new method to determine UV-induced pyrimidine dimers and their repair in individual human cells. The method was sensitive enough to determine dimers induced by UV dose as low as 2 J/m2. Normal human cells repaired 50 and 60% of total damage within 8 and 24 h after UV irradiation (20 J/m2), but Xeroderma pigmentosum cells (complementation group A) were unable to repair any within the same period. Therefore, the method proved to be a quick, easy, sensitive and accurate means to determine pyrimidine dimers in situ.  相似文献   

12.
Abstract— Photolysis of tritium-labelled thymine-derived photoproducts by 254-nm ultraviolet radiation (u.v.) in conidia of Streptomyces griseus was measured by chromatography of cell hydrolysates. The relative photolysis cross-sections of uracilthymine dimer (UT○) at various wavelengths are the same as those of thymine-thymine dimer (TT○), and their ratios at 313, 365, 405 and 436 nm are 2:1:2:3. Except at 436 nm, these relative values agree very well with cross-sections previously reported for photoreactivation of u.v. killing in this organism, leading to the conclusion that photoreactivation in the wild type is due to repair of cyclobutane-type pyrimidine dimers. In a mutant showing restricted photoreactivation (S. griseus PHR-1), post-u.v. treatments at the above wavelengths did not affect UT○ and TT○ in the conidia, supporting the earlier suggestion that this organism does not contain active PR enzyme. Another u.v. photoproduct, the precursor of a pyrimidine adduct (PO-T) that appears in cell hydrolysates, was removed from both wild-type and mutant cells very efficiently at 313 nm. This is presumably a direct photochemical reaction. In addition, in wild-type cells, the precursor of PO-T appeared to be inefficiently removed photoenzymatically at all wavelengths. Removal of the precursor of PO-T appears to be biologically significant, however, only in the mutant.  相似文献   

13.
We compared the induction of pyrimidine dimer densities after UV-irradiation in mouse melanoma cells before and after treatment with cholera toxin. Treatment with cholera toxin stimulated tyrosinase activity up to 50-fold, leading to a marked, visually apparent increase in cellular melanin concentrations. Irradiation of treated and untreated cells was therefore designed to establish whether intracellular melanin protected cells from UV-induced DNA damage. In experiments described here, we determined cytosine-thymine (C-T) as well as thymine-thymine dimer levels (T-T) by high pressure liquid chromatography in cholera toxin-treated and untreated Cloudman S91 mouse melanoma cells after irradiation with UVC (less than 290 nm) and UVB light (290-320 nm). Surprisingly, induction of melanization had no effect on the formation of pyrimidine dimers by UVC or UVB irradiation. These results indicate that de novo melanin pigmentation induced via the c-AMP pathway is not involved in protection against UV-induced thymine-containing pyrimidine dimers. In separate experiments, irradiation of toxin-treated and untreated mouse melanoma cells with UVC or UVB light produced a 20-30% lower dimer density compared to irradiated human skin fibroblasts. This finding suggests that melanin has some protection properties against UV-induced pyrimidine dimers, although the exact defense mechanism seems highly complex.  相似文献   

14.
Exponentially growing cells of the PtK-2 line (ATCC No. CCL56, from the marsupial Potorous tridactylus) require protein and RNA synthesis in a limited period following UV-radiation damage for optimal recovery as colony formers [Overberg et al. (1988) Mutat. Res. 194, 83-92]. Overall behavior suggests the operation of damage-induced recovery processes. The capacity of confluent cell monolayers for infection with unirradiated herpes simplex virus 1 (HSV-1) is sharply reduced by UV-irradiation. We have followed capacity changes in exponentially growing cells after irradiation and varying amounts of photoreactivation by means of an infectious center assay. These changes closely parallel changes of colony formation. Spontaneous recovery of capacity in the dark occurs over approximately the same time period that the UV sensitivity of colony formation depends on macromolecular synthesis. The effect of photoreactivation is complementary rather than additive to this recovery, suggesting that the dark recovery in this period concerns pyrimidine dimers in cell DNA.  相似文献   

15.
Abstract— The production of UV-induced thymine dimers and their fate upon post-irradiation incubation in the dark was studied in DNA of the intact water plants Wolffia microscopica and Spirodela polyrhiza. The results demonstrate production of thymine dimers, and the ability of the plant cells to remove the dimers from their DNA. The rate of removal is rapid during the first few h of post-irradiation incubation in the dark. It continues at a slower rate for the next 24–48 h, at which time it is essentially complete. The disappearance of thymine dimers in light or in the dark is analogous to the well-known processes in other biological systems, namely, photoreactivation and dark excision.  相似文献   

16.
Photodynamic therapy (PDT) is an efficient inducer of apoptosis in many types of cells, except in cells deficient in one or more of the factors that mediate apoptosis. Recent reports have identified autophagy as a potential alternative cell death process following PDT. Here we investigated the occurrence of autophagy after PDT with the photosensitizer Pc 4 in human cancer cells that are deficient in the pro-apoptotic factor Bax (human prostate cancer DU145 cells) or the apoptosis mediator caspase-3 (human breast cancer MCF-7v cells) and in apoptosis-competent cells (MCF-7c3 cells that stably overexpress human pro-caspase-3 and Chinese hamster ovary CHO 5A100 cells). Further, each of the cell lines was also studied with and without stably overexpressed Bcl-2. Autophagy was identified by electron microscopic observation of the presence of double-membrane-delineated autophagosomal vesicles in the cytosol and by immunoblot observation of the Pc 4-PDT dose- and time-dependent increase in the level of LC3-II, a component of the autophagosomal membrane. Autophagy was observed in all of the cell lines studied, whether or not they were capable of typical apoptosis and whether or not they overexpressed Bcl-2. The presence of stably overexpressed Bcl-2 in the cells protected against PDT-induced apoptosis and loss of clonogenicity in apoptosis-competent cells (MCF-7c3 and CHO 5A100 cells). In contrast, Bcl-2 overexpression did not protect against the development of autophagy in any of the cell lines or against loss of clonogenicity in apoptosis-deficient cells (MCF-7v and DU145 cells). Furthermore, 3-methyladenine and wortmannin, inhibitors of autophagy, provided greater protection against loss of viability to apoptosis-deficient than to apoptosis-competent cells. The results show that autophagy occurs during cell death following PDT in human cancer cells competent or not for normal apoptosis. Only the apoptosis-competent cells are protected by Bcl-2 against cell death.  相似文献   

17.
The JNK inhibitor SP600125 strongly inhibits cell proliferation in many human cancer cells by blocking cell-cycle progression and inducing apoptosis. Despite extensive study, the mechanism by which SP600125 inhibits mitosis-related effects in human leukemia cells remains unclear. We investigated the effects of SP600125 on the inhibition of cell proliferation and the cell cycle, and on microtubule dynamics in vivo and in vitro. Treatment of synchronized leukemia cells with varying concentrations of SP600125 results in significant G2/M cell cycle arrest with elevated p21 levels, phosphorylation of histone H3 within 24 h, and endoreduplication with elevated Cdk2 protein levels after 48 h. SP600125 also induces significant abnormal microtubule dynamics in vivo. High concentrations of SP600125 (200 µM) were required to disorganize microtubule polymerization in vitro. Additionally, SP600125-induced delayed apoptosis and cell death was accompanied by significant poly ADP-ribose polymerase (PARP) cleavage and caspase-3 activity in the late phase (at 72 h). Endoreduplication showed a greater increase in ectopic Bcl-2-expressing U937 cells at 72 h than in wild-type U937 cells without delayed apoptosis. These results indicate that Bcl-2 suppresses apoptosis and SP600125-induced G2/M arrest and endoreduplication. Therefore, we suggest that SP600125 induces mitotic arrest by inducing abnormal spindle microtubule dynamics.  相似文献   

18.
Prisconnatanones A (Priscon-A) is a rare tetrahydroanthraquinone isolated from herbal Prismatomeris connate. In this study, we examine its anti-tumour activity on human laryngocarcinoma HEp-2 cells in vitro. The CCK-8 assay was performed to evaluate its cytotoxicity. Cell cycle and apoptosis were analysed using flow cytometric analysis. Here, we showed Priscon-A inhibited the proliferation of HEp-2 cells in a dose-dependent manner, and at 5 μM it almost completely inhibited cell growth. Its cytotoxicity was associated with the cell cycle arrest at G2/M phase. The Annexin V-FITC/PI binding assay showed that the cell death induced by Priscon-A was associated with apoptosis. And, western blot analysis revealed that the levels of the apoptosis protein, cleaved caspase-3, PARP, p21 and Bax protein increased, while the level of anti-apoptosis protein Bcl-2 decreased.. These data demonstrated that Priscon-A significantly inhibited HEp-2 cell growth, induced the cell cycle arrest at the G2/M phase and efficiently induced cell apoptosis.  相似文献   

19.
Abstract— Exposure to visible light after UV-irradiation showed a remarkable effect on UV-induced sister chromatid exchanges (SCEs). After 6-h exposure to visible light (3 × 105 J/m2), two-thirds of the UV-induced SCEs were prevented, confirming Kato's findings. Exposure to visible light before UV irradiation had no effect. This effect of visible light on UV-induced SCEs was temperature dependent, suggesting the presence of enzymatic photoreactivation.  相似文献   

20.
Cinobufagin (CBF) is an active ingredient isolated from Venenum Bufonis extracted and dried from the secretory glands of Bufo gargarizans Cantor. The purpose of the study was to investigate the effects and underlying mechanisms of CBF on human breast cancer MCF-7 cells in vitro. Our results showed that CBF exhibited obvious cytotoxicity on MCF-7 cells in a dose- and time-dependent manner, as indicated by CCK-8 assays. Also, Hoechst 33258 staining and flow cytometry assays showed that CBF strongly induced MCF-7 cell apoptosis and G1 phase arrest. In addition, further molecular mechanistic investigation demonstrated that cinobufagin significantly increased Bax expression, decreased Bcl-2 expression level and up-regulated the ratio of the pro-apoptosis/anti-apoptosis protein Bax/Bcl-2, which were demonstrated by RT-qPCR and western blot assays. Taken together, our data confirm that CBF inhibits growth and triggers apoptosis of MCF-7 cells by affecting the expression of Bax and Bcl-2 in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号