首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of amyloid fibrils from proteins in the lysozyme family   总被引:1,自引:0,他引:1  
Amyloid fibrils are highly ordered protein assemblies known to contribute to the pathology of a variety of genetic and aging-associated diseases. More recently, these fibrils have been shown to be useful as structural scaffolds in both natural biological systems and nanotechnology applications. The intense interest in amyloid fibrils has led to the investigation of well-characterized proteins, such as hen egg white lysozyme (HEWL), as model systems to examine structural and mechanistic principles that may be generally applicable to all amyloid fibrils. The purpose of this review is to critically examine the fibril-formation literature of proteins in the lysozyme family with respect to the known structure and folding properties of these proteins. The goal is to identify similarities and differences within the family, examine general misfolding / aggregation principles, and identify key areas of importance for future work on the fibril formation of these proteins.  相似文献   

2.
The assembly of proteins into highly organized fibrillar aggregates is a key process in biology, biotechnology, and human disease. It has been shown that proteins retain a small, yet significant propensity to aggregate when they are folded into compact globular structures, and this may be physiologically relevant, particularly when considering that proteins spend most of their lifespan into such compact states. Proteins from the acylphosphatase-like structural family have been shown to aggregate via different mechanisms, with some members forming native-like aggregates as a first step of their aggregation process and others requiring unfolding as a first necessary step. Here we use the acylphosphatase from Sulfolobus solfataricus to show that assembly of folded protein molecules into native-like aggregates is prevented by single-point mutations that introduce structural protections within one of the most flexible region of the protein, the peripheral edge beta-strand 4. The resulting mutants do not form native-like aggregates, but can still form thioflavin T-binding and beta-structured oligomers, albeit more slowly than the wild-type protein. The kinetic data show that formation of the latter species proceeds via an alternative mechanism that is independent of the transient formation of native-like aggregates.  相似文献   

3.
4.
In this issue of Chemistry & Biology, Purkey et al. [1] compare the binding of PCBs and hydroxylated PCBs (polychlorinated biphenyls) with the human serum protein transthyretin. Hydroxylated PCBs appear to bind with higher selectivity to transthyretin relative to other serum proteins and in so doing inhibit amyloid fibril formation.  相似文献   

5.
Functional amyloid has been increasingly applied as self-assembling nanostructures to construct multifunctional biomaterials. However, little has been known how different side domains, varied fusion positions and subunits affect self-assembly and morphologies of amyloid fibrils. Here, we constructed three groups of two-component amyloid proteins based on CsgA, the major protein components of Escherichia coli biofilms, to bridge these gaps. We showed that all fusion proteins have amyloid features, as indicated by Congo red assay. Atomic force microscopy (AFM) indeed reveals that these fusion proteins are able to self-assemble into fibrils, with an average diameter of 0.5-2 nm and length of hundreds of nanometers to several micrometers. The diameter of fibrils increases with the increase of the molecular weight of fusion domains, while the dynamic assembly of recombinant proteins was delayed as a result of the introduction of fusion domains. Moreover, fusion of the same functional domains but at intermediate position seems to cause the most interference on fibril assembly compared with those fused at C or Nterminus, as mainly short and irregular fibrils were detected. This phenomenon appears more pronounced for randomly coiled mussel foot proteins (Mfps) than for rigid chitin-binding domain (CBD). Finally, increase of the molecular weight of tandem repeats in protein monomer seemed to increase the fibril diameter of the resultant fibrils, but either reduction of the tandem repeats of CsgA to one single belta-sheet loop or increase in the number of tandem repeats of CsgAs from one to four produced shorter and intermittent fibrils compared with CsgA control protein. These studies therefore provide insights into self-assembly of two-component amyloid proteins and lay the foundation for rational design of multifunctional molecular biomaterials.  相似文献   

6.
总结了不同抑制剂对淀粉样蛋白聚集及纤维化的抑制作用,主要介绍了金属配合物作为淀粉样蛋白抑制剂的研究,并概述了淀粉样蛋白相互作用体系的热力学研究进展.  相似文献   

7.
When mouse bone marrow-derived macrophages were stimulated with serum amyloid A (SAA), which is a major acute-phase protein, there was strong inhibition of osteoclast formation induced by the receptor activator of nuclear factor kappaB ligand. SAA not only markedly blocked the expression of several osteoclast-associated genes (TNF receptor-associated factor 6 and osteoclast-associated receptor) but also strongly induced the expression of negative regulators (MafB and interferon regulatory factor 8). Moreover, SAA decreased c-fms expression on the cell surface via shedding of the c-fms extracellular domain. SAA also restrained the fusion of osteoclast precursors by blocking intracellular ATP release. This inhibitory response of SAA is not mediated by the well-known SAA receptors (formyl peptide receptor 2, Toll-like receptor 2 (TLR2) or TLR4). These findings provide insight into a novel inhibitory role of SAA in osteoclastogenesis and suggest that SAA is an important endogenous modulator that regulates bone homeostasis.  相似文献   

8.
We employ constant-temperature and replica exchange molecular dynamics to survey the free energy landscape of the ccbeta peptide using a united-atom potential and an implicit solvent representation. Starting from the experimental coiled-coil structure we observe alpha to beta conversion on increasing the temperature, in agreement with experiment. Various beta-sheet trimers are identified as free energy minima, including one that closely resembles the amyloid beta-sheet model previously proposed from experimental data. We characterize two alternative pathways leading to beta-sheets. The first proceeds via direct alpha to beta conversion without dissociation of the trimer, and the second can be classified as a dissociation/reassociation pathway.  相似文献   

9.
10.
Fibrillar protein aggregation is a hallmark of a variety of human diseases. Examples include the deposition of amyloid-β and tau in Alzheimer''s disease, and that of α-synuclein in Parkinson''s disease. The molecular mechanisms by which soluble proteins form amyloid fibrils have been extensively studied in the test tube. These investigations have revealed the microscopic steps underlying amyloid formation, and the role of factors such as chaperones that modulate these processes. This perspective explores the question to what extent the mechanisms of amyloid formation elucidated in vitro apply to human disease. The answer is not yet clear, and may differ depending on the protein and the associated disease. Nevertheless, there are striking qualitative similarities between the aggregation behaviour of proteins in vitro and the development of the related diseases. Limited quantitative data obtained in model organisms such as Caenorhabditis elegans support the notion that aggregation mechanisms in vivo can be interpreted using the same biophysical principles established in vitro. These results may however be biased by the high overexpression levels typically used in animal models of protein aggregation diseases. Molecular chaperones have been found to suppress protein aggregation in animal models, but their mechanisms of action have not yet been quantitatively analysed. Several mechanisms are proposed by which the decline of protein quality control with organismal age, but also the intrinsic nature of the aggregation process may contribute to the kinetics of protein aggregation observed in human disease.

The molecular mechanisms of amyloid formation have been studied extensively in test tube reactions. This perspective article addresses the question to what extent these mechanisms apply to the complex situation in living cells and organisms.  相似文献   

11.
Deamidation of asparagine and glutamine is the most common nonenzymatic, post-translational modification. Deamidation can influence the structure, stability, folding, and aggregation of proteins and has been proposed to play a role in amyloid formation. However there are no structural studies of the consequences of deamidation on amyloid fibers, in large part because of the difficulty of studying these materials using conventional methods. Here we examine the effects of deamidation on the kinetics of amyloid formation by amylin, the causative agent of type 2 diabetes. We find that deamidation accelerates amyloid formation and the deamidated material is able to seed amyloid formation by unmodified amylin. Using site-specific isotope labeling and two-dimensional infrared (2D IR) spectroscopy, we show that fibers formed by samples that contain deamidated polypeptide contain reduced amounts of β-sheet. Deamidation leads to disruption of the N-terminal β-sheet between Ala-8 and Ala-13, but β-sheet is still retained near Leu-16. The C-terminal sheet is disrupted near Leu-27. Analysis of potential sites of deamidation together with structural models of amylin fibers reveals that deamidation in the N-terminal β-sheet region may be the cause for the disruption of the fiber structure at both the N- and C-terminal β-sheet. Thus, deamidation is a post-translational modification that creates fibers that have an altered structure but can still act as a template for amylin aggregation. Deamidation is very difficult to detect with standard methods used to follow amyloid formation, but isotope-labeled IR spectroscopy provides a means for monitoring sample degradation and investigating the structural consequences of deamidation.  相似文献   

12.
We report on a study of insulin incorporation into cubic phases of mono-olein (MO), using synchrotron small-angle X-ray scattering and FT-IR spectroscopy. We studied the thermal stability and aggregation scenario of insulin as a function of protein concentration in the narrow water channels of the cubic lipid matrix and compared it with data for insulin unfolding and fibrillation in bulk water solutions. The concomitant effect of insulin entrapment on the structure and phase behavior of the lipid matrix itself was also examined. We show that the protein's unfolding behavior and stability are influenced by confinement due to geometrical limitations, and vice versa, the topological properties of the lipid matrix change as well. The addition of insulin already at concentrations as low as 0.1 wt % significantly alters the phase behavior of MO. Surprisingly, new cubic structures are induced by insulin incorporation into the lipid matrix. When insulin begins to partially unfold at higher temperatures, the structure of the new cubic phase changes and finally disappears around 60 degrees C, where the aggregation process sets in. The aggregation in cubo proceeds much faster and leads to the formation of medium-sized oligomers or clusters, while the formation of large fibrillar agglomerates, as observed for bulk insulin aggregation, is largely prohibited. Hence, the results yield valuable information about the use of cubic mesoporous lipid systems as a medium for long-term storage of insulin and aggregation-prone proteins in general. Furthermore, the results provide new insights into the effects of soft-matter confinement on protein aggregation and fibrillation, a situation usually met in natural cell environments.  相似文献   

13.
The apparent stability of MCM-41 and Al-MCM-41 in water was appraised in a series of solubility experiments. MCM-41 is a siliceous, mesoporous material of hexagonal symmetry and exceptionally high surface area first synthesized in 1992. The dissolution experiments were carried out at several solid/water ratios: 1/200, 1/100, and 1/75. Results indicated that MCM-41 and Al-MCM-41 are more soluble than amorphous silica at ambient temperatures. Using standard thermodynamic data, a minimum Gibbs free energy of formation of -847.9 kJ/mol for MCM-41 was calculated compared to -848.85 kJ/mol for amorphous silica and -856.3 kJ/mol for quartz. X-ray diffraction (XRD) analyses of recovered solids indicated a progressive loss of crystallinity in MCM-41 and Al-MCM-41 over the 79 day dissolution experiment. BET nitrogen surface area analyses of recovered solids revealed no appreciable change in the surface area of either material after 79 days of reaction in water. Field emission scanning electron microscope (SEM) images taken of the 79 day MCM-41 sample showed some degradation of the initial structure-fine, worm-like particles.  相似文献   

14.
Amyloid fibril formation, as observed in Alzheimer's disease and type II diabetes, is currently described by a nucleation-condensation mechanism, but the details of the process preceding the formation of the nucleus are still lacking. In this study, using an activation-relaxation technique coupled to a generic energy model, we explore the aggregation pathways of 12 chains of the hexapeptide NFGAIL. The simulations show, starting from a preformed parallel dimer and ten disordered chains, that the peptides form essentially amorphous oligomers or more rarely ordered beta-sheet structures where the peptides adopt a parallel orientation within the sheets. Comparison between the simulations indicates that a dimer is not a sufficient seed for avoiding amorphous aggregates and that there is a critical threshold in the number of connections between the chains above which exploration of amorphous aggregates is preferred.  相似文献   

15.
The formation of amyloid aggregates is responsible for a wide range of diseases, including Alzheimer's and Parkinson's disease. Although the amyloid-forming proteins have different structures and sequences, all undergo a conformational change to form amyloid aggregates that have a characteristic cross-β-structure. The mechanistic details of this process are poorly understood, but different strategies for the development of inhibitors of amyloid formation have been proposed. In most cases, chemically diverse compounds bind to an elongated form of the protein in a β-strand conformation and thereby exert their therapeutic effect. However, this approach could favor the formation of prefibrillar oligomeric species, which are thought to be toxic. Herein, we report an alternative approach in which a helical coiled-coil-based inhibitor peptide has been designed to engage a coiled-coil-based amyloid-forming model peptide in a stable coiled-coil arrangement, thereby preventing rearrangement into a β-sheet conformation and the subsequent formation of amyloid-like fibrils. Moreover, we show that the helix-forming peptide is able to disassemble mature amyloid-like fibrils.  相似文献   

16.
Discovery of an unexpected and thermodynamically paradoxical transition from a crystalline state to an amorphous dense glassy state induced in pure organic substances by a direct absorption of a quantity of heat under atmospheric pressure and its detailed analysis performed with the use of a sensitive scanning transitiometer are described. The obtained results present first experimental precise evidence for understanding the mechanism of such a structural instability of crystalline substances in the form of c-a transition. The observed c-a transition is a purely physical phenomenon, occurring between two nonequilibrium states, a metastable crystalline phase and a dense glass, occurring through a local transient phenomenon of virtual melting. The metastable state of a crystalline substance can be caused by existence of a number of crystalline imperfections created either during crystallization or by external actions. By measuring extremely sensitive energetic effects, we found the present method to be helpful for quantitative determination of the critical number of imperfections in a crystalline solid, which make it metastable and for an indication under which conditions such a metastable crystalline form becomes unstable. By performing the transitiometric analysis of c-a transitions with two polymorphs of rosiglitazone maleate, we demonstrated to what extent this analysis is important in investigation of stability of crystalline components of drugs.  相似文献   

17.
At low pH insulin is highly prone to self-assembly into amyloid fibrils. The process has been proposed to be affected by the existence of secondary nucleation pathways, in which already formed fibrils are able to catalyze the formation of new fibrils. In this work, we studied the fibrillation process of human insulin in a wide range of protein concentrations. Thioflavin T fluorescence was used for its ability to selectively detect amyloid fibrils, by mechanisms that involve the interaction between the dye and the accessible surface of the fibrils. Our results show that the rate of fibrillation and the Thioflavin T fluorescence intensity saturate at high protein concentration and that, surprisingly, the two parameters are proportional to each other. Because Thioflavin T fluorescence is likely to depend on the accessible surface of the fibrils, we suggest that the overall fibrillation kinetics is mainly governed by the accessible surface, through secondary nucleation mechanisms. Moreover, a statistical study of the fibrillation kinetics suggests that the early stages of the process are affected by stochastic nucleation events.  相似文献   

18.
The possibility of downhill instead of two-state folding for proteins has been a very controversial topic which arose from recent experimental studies. From the theoretical side, this question has also been accomplished in different ways. Given the experimental observation that a relationship exists between the native structure topology of a protein and the kinetic and thermodynamic properties of its folding process, Gō-type potentials are an appropriate way to approach this problem. In this work, we employ an interaction potential from this family to get a better insight on the topological characteristics of the native state that may somehow determine the presence of a thermodynamic barrier in the folding pathway. The results presented here show that, indeed, the native topology of a small protein has a great influence on its folding behavior, mostly depending on the proportion of local and long range contacts the protein has in its native structure. Furthermore, when all the interactions present contribute in a balanced way, the transition results to be cooperative. Otherwise, the tendency to a downhill folding behavior increases.  相似文献   

19.
The role of Zn2+ in pre-organizing Abeta(10-21) amyloid formation is shown to preferentially alter the relative rate of fibril nucleation and to have little influence on fibril propagation. Fibril morphology, as determined by small angle neutron scattering (SANS) and transmission electron microscopy (TEM), was unchanged in the presence and absence of Zn2+ in Abeta(10-21), as well as in a series of site-specifically altered variants. The metal-independence of the Abeta(10-21)H13Q peptide suggested that the increase in nucleation rate in Abeta(10-21) is due to Zn2+-mediated inter-sheet interactions, involving both histidine 13 and histidine 14.  相似文献   

20.
The potential of a recently developed lamp-based fluorescence detector for the analysis of underivatised proteins by capillary electrophoresis (CE) was investigated. Fluorescence detection (Flu) was achieved using optical light guides to deliver excitation light from a Xenon–Mercury lamp to the capillary detection window and to collect fluorescence emission and lead it to a photomultiplier. The performance of the detector was evaluated by monitoring the native fluorescence of the amino acid tryptophan and the proteins α-chymotrypsinogen A, carbonic anhydrase II, lysozyme and trypsinogen upon excitation at 280 nm. The test compounds were analysed using background electrolytes (BGEs) of sodium phosphate at pH 3.0 and 11.3. The results were compared to experiments of CE with UV absorbance detection. For tryptophan, a linear fluorescence response was obtained with a dynamic range of over 4 orders of magnitude, and a limit of detection (LOD) of 6.7 nM. This LOD was a factor of 200 more favourable than UV detection at 280 nm, and a factor of 20 better than detection at low-UV wavelengths. All tested proteins showed linear fluorescence responses up to 250 μg/mL. LODs were typically in the 10–20 nM range. These LODs were a factor of 25 lower than for UV detection at 280 nm, and comparable to UV detection at low-UV wavelengths. Overall, Flu yields much more stable baselines, especially with a BGE of high pH. The applicability of CE–Flu is demonstrated by the analysis of a degraded protein mixture, and of an expired formulation of the protein drug human growth hormone, indicating that protein degradation products can be selectively detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号