首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Ryu KS  Shaikh K  Goluch E  Fan Z  Liu C 《Lab on a chip》2004,4(6):608-613
Previously, we reported a micro magnetic stir-bar mixer driven by an external rotating magnetic field and its rapid mixing performance in polydimethyl-siloxane (PDMS) channels. The PDMS piece with embedded fluid channels were manually aligned to a glass substrate and assembled. In this paper, we report the fabrication and testing results of a micro magnetic stir-bar monolithically integrated in parylene surface-micromachined channels with improved design features, including small tolerance of the stir-bar to channel wall (10 microm). Using of parylene based microchannels with improved design not only provides improved mixing, but also eliminates certain problems associated with PDMS-based channels. For example, porosity of PDMS causes evaporation and absorption of chemicals and thus channels made of PDMS are prone to cross-contamination. We have also demonstrated that the magnetic stir-bar can be used to pump liquid in micro channels.  相似文献   

2.
Wu M  Wu R  Zhang Z  Zou H 《Electrophoresis》2011,32(1):105-115
Organic-silica hybrid monolithic columns have drawn more and more attention due to the ease of preparation and good mechanical stability in recent years. Many synthetic approaches have been developed and a variety of hybrid monolithic capillary columns have been prepared. The sol-gel process is well recognized in the fabrication of hybrid monolithic columns, which can be mainly classified as one-step, acid/base two-step procedures. The new approaches such as the "one-pot" and nano-scaled inorganic-organic hybrid reagent of polyhedral oligomeric silsesquioxane used as a cross-linker have also emerged for the preparation of hybrid monolithic columns. The applications of the organic-silica hybrid monolithic capillary columns for capillary electrochromatography, micro high-performance liquid chromatography, solid-phase micro-extraction and enzymatic reactor etc. are included in this review.  相似文献   

3.
Electrospray from a channel exit at the edge of a fluorocarbon coated cycloolefin copolymer microfluidic device has been investigated. The fluorocarbon coating facilitated generation of a stable electrospray, thereby enhancing the detectability of electrospray ionization (ESI) mass spectrometry (MS). A microfluidic device of integrated ESI emitters and monolithic liquid chromatography columns has been fabricated on a cycloolefin copolymer chip. The monolithic columns were polymerized in situ using UV irradiation with a photomask to confine the porous polymer monolith to the desired regions of the channels. The monolithic stationary phase was homogenous and well bonded to the channel surfaces, which had been functionalized by graft polymerization. The ESI potential was applied within the channel via a carbon ink line. The performance of this microfluidic device was demonstrated by analysis of a tryptic digest of bovine serum albumin on an ion trap MS instrument.  相似文献   

4.
Lee DS  Park SH  Yang H  Chung KH  Yoon TH  Kim SJ  Kim K  Kim YT 《Lab on a chip》2004,4(4):401-407
The current paper describes the design, fabrication, and testing of a micromachined submicroliter-volume polymerase chain reaction (PCR) chip with a fast thermal response and very low power consumption. The chip consists of a bulk-micromachined Si component and hot-embossed poly(methyl methacrylate)(PMMA) component. The Si component contains an integral microheater and temperature sensor on a thermally well-isolated membrane, while the PMMA component contains a submicroliter-volume PCR chamber, valves, and channels. The micro hot membrane under the submicroliter-volume chamber is a silicon oxide/silicon nitride/silicon oxide (O/N/O) diaphragm with a thickness of 1.9 microm, resulting in a very low thermal mass. In experiments, the proposed chip only required 45 mW to heat the reaction chamber to 92 degrees C, the denaturation temperature of DNA, plus the heating and cooling rates are about 80 degrees C s(-1) and 60 degrees C s(-1), respectively. We validated, from the fluorescence results from DNA stained with SYBR Green I, that the proposed chip amplified the DNA from vector clone, containing tumor suppressor gene BRCA 1 (127 base pairs at 11th exon), after 30 thermal cycles of 3 s, 5 s, and 5 s at 92 degrees C, 55 degrees C, and 72 degrees C, respectively, in a 200 nL-volume chamber. As for specificity of DNA products, owing to difficulty in analyzing the very small volume PCR results from the micro chip, we vicariously employed the larger volume PCR products after cycling with the same sustaining temperatures as with the micro chip but with much slower ramping rates (3.3 degrees C s(-1) when rising, 2.5 degrees C s(-1) when cooling) within circa 20 minutes on a commercial PCR machine and confirmed the specificity to BRCA 1 (127 base pairs) with agarose gel electrophoresis. Accordingly, the fabricated micro chip demonstrated a very low power consumption and rapid thermal response, both of which are crucial to the development of a fully integrated and battery-powered instrument for a lab-on-a-chip DNA analysis.  相似文献   

5.
6.
Hollow tubular microfluidic channels were fabricated on quartz substrates using sacrificial layer, planar micromachining processes. The channels were created using a bottom-up fabrication technique, namely patterning a photoresist/aluminum sacrificial layer and depositing SiO(2) over the substrate. The photoresist/aluminum layer was removed by etching first with HCl/HNO(3), followed by etching in Nano-Strip, a more stable form of piranha (H(2)SO(4)/H(2)O(2)) stripper. Rapid separation of fluorescently labeled amino acids was performed on a device made with these channels. The fabrication process presented here provides unique control over channel composition and geometry. Future work should allow the fabrication of highly complex and precise devices with integrated analytical capabilities essential for the development of micro-total analysis systems.  相似文献   

7.
A novel single-step sol-gel approach for the preparation of beta-CD-bonded silica monolithic electrochromatographic columns is established. The porous silica networks were fabricated inside fused-silica capillaries using sol-gel processing of tetramethoxysilane and an organfunctional silicon alkoxide that contains beta-CD. Scanning electron micrographs and nitrogen adsorption-desorption data showed that these functional monolithic columns have double pores structures with micrometer-size co-continuous through-pores and silica skeletons with open mesopores. The beta-CD monolithic columns have successfully been applied to the separation of several neutral and negatively charged isomers by CEC. The column performance was evaluated by using positional isomers of naphthalenedisulfonic acid as model compounds. A plate height of less than 10 mum for the first eluted isomer of naphthalenedisulfonic acid was obtained at an optimal flow rate (0.47 mm/s) of the mobile phase. Moreover, the columns have been proved to be stable for more than 100 runs during 3 months period and show reasonable column reproducibility.  相似文献   

8.
Two‐dimensional liquid chromatography largely increases the number of separated compounds in a single run, theoretically up to the product of the peaks separated in each dimension on the columns with different selectivities. On‐line coupling of a reversed‐phase column with an aqueous normal‐phase (hydrophilic interaction liquid chromatography) column yields orthogonal systems with high peak capacities. Fast on‐line two‐dimensional liquid chromatography needs a capillary or micro‐bore column providing low‐volume effluent fractions transferred to a short efficient second‐dimension column for separation at a high mobile phase flow rate. We prepared polymethacrylate zwitterionic monolithic micro‐columns in fused silica capillaries with structurally different dimethacrylate cross‐linkers. The columns provide dual retention mechanism (hydrophilic interaction and reversed‐phase). Setting the mobile phase composition allows adjusting the separation selectivity for various polar substance classes. Coupling on‐line an organic polymer monolithic capillary column in the first dimension with a short silica‐based monolithic column in the second dimension provides two‐dimensional liquid chromatography systems with high peak capacities. The silica monolithic C18 columns provide higher separation efficiency than the particle‐packed columns at the flow rates as high as 5 mL/min used in the second dimension. Decreasing the diameter of the silica monolithic columns allows using a higher flow rate at the maximum operation pressure and lower fraction volumes transferred from the first, hydrophilic interaction dimension, into the second, reversed‐phase mode, avoiding the mobile phase compatibility issues, improving the resolution, increasing the peak capacity, and the peak production rate.  相似文献   

9.
Heyries KA  Hansen CL 《Lab on a chip》2011,11(23):4122-4125
This paper presents an improvement to the soft lithography fabrication process that uses chemical vapor deposition of poly(chloro-p-xylylene) (parylene C) to protect microfabricated masters and to improve the release of polymer devices following replica molding. Chemical vapor deposition creates nanometre thick conformal coatings of parylene C on silicon wafers having arrays of 30 μm high SU8 pillars with densities ranging from 278 to 10,040 features per mm(2) and aspect ratios (height : width) from 1 : 1 to 6 : 1. A single coating of parylene C was sufficient to permanently promote poly(dimethyl)siloxane (PDMS) mold release and to protect masters for an indefinite number of molding cycles. We also show that the improved release properties of parylene treated masters allow for fabrication with hard polymers, such as poly(urethane), that would otherwise not be compatible with SU8 on silicon masters. Parylene C provides a robust and high performance mold release coating for soft lithography microfabrication that extends the life of microfabricated masters and improves the achievable density and aspect ratio of replicated features.  相似文献   

10.
A novel, facile, and efficient one‐step copolymerization strategy was developed for the preparation of β‐cyclodextrin (β‐CD) methacrylate monolithic columns using click chemistry. The novel mono‐(1H‐1,2,3‐triazol‐4‐ylmethyl)‐2‐methylacryl‐β‐CD monomer was synthesized by a click reaction between propargyl methacrylate and mono‐6‐azido‐β‐CD, and then monolithic columns were prepared through a one‐step in situ copolymerization of the mono‐(1H‐1,2,3‐triazol‐4‐ylmethyl)‐2‐methylacryl‐β‐CD monomer and ethylene dimethacrylate. The physicochemical properties and column performance of the fabricated monolithic columns were characterized by elemental analysis, SEM, and micro‐HPLC. Satisfactory column permeability, efficiency, and separation performance were obtained for the optimized poly(mono‐(1H‐1,2,3‐triazol‐4‐ylmethyl)‐2‐methylacryl‐β‐CD‐co‐ethylene dimethacrylate) monolithic columns. Additionally, typical hydrophilic interaction chromatography retention behavior was observed on the monoliths at high acetonitrile content in the mobile phase. Although the enantioselectivity of our monolithic columns did not meet the level of other reported β‐CD monolithic columns, this one‐step strategy based on click chemistry still provides an interesting and effective model as it offers the possibility to easily prepare related novel CD methacrylate monoliths through a one‐step copolymerization strategy.  相似文献   

11.
Electrically insulated porous SiO2 channels for electrokinetic separation devices were fabricated based on a mask-less etching process for creation of high aspect ratio needles in silicon. The silicon needles are converted to SiO2 by oxidation and integrated within the interior of a fluidic channel network. The channels are about 5 microm high with a pore size of 0.5+/-0.2 microm. An electrophoretic separation of a mixture of fluorescein and 5-carboxyfluorescein using epi-fluorescence detection was performed to verify proper electrokinetic transport in the porous channels. The plate height was about 170,000 m-1 for a field strength of 170 V cm-1. In the near future, it is intended to extend the fabrication scheme to include an array of porous pillars for capillary electrochromatography experiments.  相似文献   

12.
Wu R  Hu L  Wang F  Ye M  Zou H 《Journal of chromatography. A》2008,1184(1-2):369-392
The column technologies play a crucial role in the development of new methods and technologies for the separation of biological samples containing hundreds to thousands compounds. This review focuses on the development of monolithic technology in micro-column formats for biological analysis, especially in capillary liquid chromatography, capillary electrochromatography and microfluidic devices in the past 5 years (2002-2007) since our last review in 2002 on monoliths for HPLC and CEC. The fabrication and functionalization of monoliths were summarized and discussed, with the aim of presenting how monolithic technology has been playing as an attractive tool for improving the power of existing chromatographic separation processes. This review consists of two parts: (i) the recent development in fabrication of monolithic stationary phases from direct synthesis to post-functionalization of the polymer- and silica-based monoliths tailoring the physical/chemical properties of porous monoliths; (ii) the application of monolithic stationary phases for one- and multi-dimensional capillary liquid chromatography, fast separation in capillary electro-driven chromatography, and microfluidic devices.  相似文献   

13.
Monolithic supports are a new generation of stationary phases which are typically prepared using a simple molding process carried out within the confines of the capillary. They provide high rates of mass transfer at lower pressure drops, enable much faster separations and the nature of the pores allows easy permeability for large molecules. This review summarizes the current achievements and application of organic polymer-based monolithic columns, silica-based monolithic columns and their application in bioaffinity processing, modern biotechnology, determination of microorganisms and chiral separations. Special attention is paid to microfabricated devices with monolithic supports because their fabrication of particles directly in the channel eliminates the need for a frit and also creates a unique homogeneity of packing.  相似文献   

14.
15.
In this paper, the impact of airflow velocity and pressure in the two popular configuration gas chromatography (GC) column channels (the serpentine channel and the spiral channel) was simulated and evaluated using ANSYS dynamic analysis. The simulated result of airflow velocity and pressure distribution in the Gas chromatography (GC) channel shows that the impact in the spiral channel corner is smaller than that in the serpentine channel corner. So, the spiral channel columns were fabricated based on the MEMS technology and the stationary phase OV‐1 was coated using a dynamic procedure. The separation performance of the 3 m non‐polar GC column shows perfect separation efficiency for the non‐polar components, the microfabricated GC column yields 7100 theoretical plate, and the analysis time is less than 200 s.  相似文献   

16.
A monolithic micro gas chromatography (μGC) chip which integrated the micro separation column (μSC) and the micro thermal conductivity detector (μTCD) based on MEMS (Micro-electro-mechanical systems) technique was fabricated. Compared to the state of the art, the μSC with high depth-to-width ratio channels that was coated with mesoporous silica nanoparticles as stationary phase could effectively improve the column capacity and separation performance. Besides, the stable suspending μTCD, which was designed and fabricated in two ports of the μGC chip, could availably enhance the thermal isolation and reliability of the device. The mixture of light hydrocarbons (methane, ethane, propane and butane) could be separated from each other and detected by this monolithic integrated μGC chip, in which the overall analysis and detection time was only 33 seconds, the separation resolution of ethane and propane was 8.34, and the number of theoretical plate was as high as 11420. The monolithic integrated μGC chip has many advantages such as good separation resolution, high column efficiency and short analysis time, and is suitable for portable gas chromatographic field and onsite detection.  相似文献   

17.
The fabrication and performance of an electrophoretic separation chip with integrated optical waveguides for absorption detection is presented. The device was fabricated on a silicon substrate by standard microfabrication techniques with the use of two photolithographic mask steps. The waveguides on the device were connected to optical fibers, which enabled alignment free operation due to the absence of free-space optics. A 750 microm long U-shaped detection cell was used to facilitate longitudinal absorption detection. To minimize geometrically induced band broadening at the turn in the U-cell, tapering of the separation channel from a width of 120 down to 30 microm was employed. Electrical insulation was achieved by a 13 microm thermally grown silicon dioxide between the silicon substrate and the channels. The breakdown voltage during operation of the chip was measured to 10.6 kV. A separation of 3.2 microM rhodamine 110, 8 microM 2,7-dichlorofluorescein, 10 microM fluorescein and 18 microM 5-carboxyfluorescein was demonstrated on the device using the detection cell for absorption measurements at 488 nm.  相似文献   

18.
整体柱离子色谱的研究进展   总被引:1,自引:0,他引:1  
陈倩  于泓 《分析测试学报》2011,30(6):705-712
该文介绍了离子色谱的分类,整体柱的分类、制备及特点,并以此为依据归纳总结了常规整体柱在离子色谱中的应用和毛细管整体柱在毛细管离子色谱中的应用,其中包括硅胶基质整体柱和聚合物基质整体柱,评述并展望了整体柱离子色谱的发展前景.  相似文献   

19.
通过再铸模法将聚二甲基硅氧烷(PDMS)预聚物固化在由微细金属丝构成的微流体孔道的印模中,一次成型制作了整体式PDMS芯片.将所制作的芯片与化学发光检测器集成构建了微芯片毛细管电泳分析系统.初步考察了不经过衍生化时该系统分离检测氨基酸的性能.实验结果表明,精氨酸和天门冬氨酸在80s内完全分离,分离度为2.45,精氨酸的浓度检测限为3.50μmol/L.  相似文献   

20.
Liquid chromatography on columns with small internal diameters has been reviewed as the intermediate technique between conventional liquid chromatography and microchip separations. The development of micro column separations in the early years has been described, starting with the papers of Horváth and co-workers and Ishii and co-workers, continuing into the first part of the eighties, then making a leap in time to recent innovations with small-bore columns. Based on internal diameters a classification of the different analytical HPLC columns has been suggested. The advantages of small-bore columns have been discussed, with particular emphasis on the advantage of coupling to concentration sensitive detectors when the sample amount is limited. Open tubular columns are treated as a part of the historic background. The recent developments include a brief look into the current status of monolithic columns, the use of packed nano columns and micro columns with electrospray mass spectrometry, and the potential of two-dimensional comprehensive liquid chromatography. Finally, the coupling of sample preparation to analytical columns and the future applications of the novel technological improvements to the microchip separation methods have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号