首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
The electron impact fragmentation of n-heptane has been investigated using 13C labelled derivatives. A mechanism is proposed for the loss of alkyl radicals where the cleavage of a C? C bond is coupled with the rearrangement of a hydrogen atom, thus yielding a secondary alkyl ion that eventually fragments further by a subsequent loss of olefin. For alkyl ions with less than six carbon atoms this consecutive pathway is in competition with formation directly from the molecular ion. The consecutive pathway contributes about 15% to the intensity of the alkyl ions with four and five carbon atoms and 80% for smaller ions. The electron energy dependence was studied.  相似文献   

2.
The field mass spectra of 18 sulfides, sulfoxides, and sulfones were investigated, and the principles of charge localization in the dissociation and rearrangements of the molecular ions of these compounds were established. A new type of fragmentation leading to the elimination of S+., SO+., and SO2. was observed. A new mechanism, according to which cleavage of two C-S bonds and the formation of one new C-C bond due to radical recombination cocur in the cyclic transition complex, is proposed. Prior migration of alkyl radicals from sulfur to oxygen with subsequent cleavage of the S-O and C-S bonds via the above-mentioned mechanism may also occur in the molecular ions of sulfoxides and sulfones.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 23, No. 2, pp. 172–181, March–April, 1987.  相似文献   

3.
A series of intramolecular H‐atom shift reactions of both alkenyl and allylic radicals were investigated by using CBS‐QB3 electronic structure calculations. In the first set of reactions, an alkyl radical site was converted into an allylic radical site. In the second set, an allylic radical was converted into another allylic radical. The results are discussed in the context of a Benson‐type model to examine the impact of the transition‐state partial resonance stabilization on both the activation energies and the pre‐exponential factors. In most cases, the differences in the activation energies relative to those for the analogous alkyl radicals are primarily due to the barriers of the bimolecular reaction component of the activation energy. For the first set of reactions, there is additional entropy loss relative to the alkyl radical analogues. This additional loss of entropy may be smaller than some previous estimates. The pre‐exponential factors for the second set of reactions are generally similar to those of the analogous alkyl radical reactions (once the double bond in the transition state is accounted for).  相似文献   

4.
The fragmentation of n-hexane, n-nonane and n-tetradecane under electron impact has been investigated, using 13C labelled compounds. The mechanism of the formation of the alkyl radical ions is quantitatively explained by using a method of calculation developed in an earlier publication for n-heptane. It is assumed that these ions are formed either by a direct C-C bond cleaveage or by a secondary olefin loss from an alkyl radical ion. In the latter case the probability for a particular carbon to be lost in the neutral fragment is assumed to be random. The probability for a direct cleavage to an alkyl ion is about 80% for an ion containing at least half of the number of carbon atoms of the molecular ion and 15% for the smaller ions. The [M? H]+ ion seems to be a special case not yet clearly understood. Former results about the loss of methyl from the molecular ion are confirmed.  相似文献   

5.
Electronic structure methods have been used to study the transition state and products of the reaction between alkyl radicals and CO coordinated in transition-metal complexes. At the B3LYP DFT level, methyl addition to a carbonyl of [Ru(CO)5] or [Ru(CO)3(dmpe)] is calculated to be about 6 kcal/mol more exothermic than addition to free CO. In contrast, methyl addition to [Mo(CO)6] is 12 kcal/mol less exothermic than addition to CO, while the reaction enthalpy of methyl addition to [Pd(CO)4] is comparable to that of free CO. Related results are obtained at the CCSD-T level and for the reactions of the cyclohexyl radical. The transition state for these reactions is characterized by significant distortion of the geometry of the reactant complex, which include lengthening and bending of the M-CO bond, but with negligible C-C bond formation. Accordingly, the activation energy for addition to coordinated carbonyls is 2-10 kcal/mol greater than that of addition to free CO. Additional calculations were also carried out on representative unsaturated metal carbonyls. The calculated results afford an understanding of the mechanism of previously reported photochemical alkane carbonylation systems utilizing d(8)-ML5 metal carbonyls as cocatalysts. In particular, it is strongly indicated that such systems operate via direct attack by an alkyl radical at a CO ligand, a reaction that has not previously been proposed.  相似文献   

6.
We report the first preparation of a stable aminothioketyl radical, CH(3)C(?)(SH)NHCH(3) (1), by fast electron transfer to protonated thioacetamide in the gas phase. The radical was characterized by neutralization-reionization mass spectrometry and ab initio calculations at high levels of theory. The unimolecular dissociations of 1 were elucidated with deuterium-labeled radicals CH(3)C(?)(SD)NHCH(3) (1a), CH(3)C(?)(SH)NDCH(3) (1b), CH(3)C(?)(SH)NHCD(3) (1c), and CD(3)C(?)(SH)NHCH(3) (1d). The main dissociations of 1 were a highly specific loss of the thiol H atom and a specific loss of the N-methyl group, which were competitive on the potential energy surface of the ground electronic state of the radical. RRKM calculations on the CCSD(T)/aug-cc-pVTZ potential energy surface indicated that the cleavage of the S-H bond in 1 dominated at low internal energies, E(int) < 232 kJ mol(-1). The cleavage of the N-CH(3) bond was calculated to prevail at higher internal energies. Loss of the thiol hydrogen atom can be further enhanced by dissociations originating from the B excited state of 1 when accessed by vertical electron transfer. Hydrogen atom addition to the thioamide sulfur atom is calculated to have an extremely low activation energy that may enable the thioamide group to function as a hydrogen atom trap in peptide radicals. The electronic properties and reactivity of the simple aminothioketyl radical reported here may be extrapolated and applied to elucidate the chemistry of thioxopeptide radicals and cation radicals of interest to protein structure studies.  相似文献   

7.
The C-C beta-scission reactions of 1-alkylcycloalkoxyl radicals, generated photochemically by visible light irradiation of CH2Cl2 solutions containing the parent 1-alkylcycloalkanols, (diacetoxy)iodobenzene (DIB), and I2, have been investigated through the analysis of the reaction products. The 1-alkylcycloalkoxyl radicals undergo competition between ring opening and C-alkyl bond cleavage as a function of ring size and of the nature of the alkyl substituent. With the 1-propylcycloheptoxyl, 1-propylcyclooctoxyl,and 1-phenylcyclooctoxyl radicals, formation of products deriving from an intramolecular 1,5-hydrogen atom abstraction reaction from the cycloalkane ring has also been observed. The results are discussed in terms of release of ring strain associated to ring opening, stability of the alkyl radical formed by C-alkyl cleavage, and with cycloheptoxyl and cyclooctoxyl radicals, also in terms of the possibility of achieving a favorable geometry for intramolecular hydrogen atom abstraction.  相似文献   

8.
The mechanism employed by DNA photolyase to repair 6-4 photoproducts in UV-damaged DNA is explored by means of quantum chemical calculations. Considering the repair of both oxetane and azetidine lesions, it is demonstrated that reduction as well as oxidation enables a reversion reaction by creating anionic or cationic radicals that readily fragment into monomeric pyrimidines. However, on the basis of calculated reaction energies indicating that electron transfer from the enzyme to the lesion is a much more favorable process than electron transfer in the opposite direction, it is suggested that the photoenzymic repair can only occur by way of an anionic mechanism. Furthermore, it is shown that reduction of the oxetane facilitates a mechanism involving cleavage of the C-O bond followed by cleavage of the C-C bond, whereas reductive fragmentation of the azetidine may proceed with either of the intermonomeric C-N and C-C bonds cleaved as the first step. From calculations on neutral azetidine radicals, a significant increase in the free-energy barrier for the initial fragmentation step upon protonation of the carbonylic oxygens is predicted. This effect can be attributed to protonation serving to stabilize reactant complexes more than transition structures.  相似文献   

9.
A product and time-resolved kinetic study on the reactivity of tertiary arylcarbinyloxyl radicals bearing alpha-cyclopropyl and alpha-cyclobutyl groups has been carried out. Both the 1-cyclopropyl-1-phenylethoxyl (1.) and alpha,alpha-dicyclopropylphenylmethoxyl (2.) radicals undergo beta-scission to give cyclopropyl phenyl ketone as the major or exclusive product with rate constants higher than that measured for the cumyloxyl radical. It is proposed that in the transition state for beta-scission of 1. and 2., formation of the C=O double bond is assisted by overlap with the C-C bonding orbitals of the cyclopropane ring. With tertiary arylcarbinyloxyl radicals bearing alpha-cyclobutyl groups such as the 1-cyclobutyl-1-phenylethoxyl (4.) and 1-cyclobutyl-1-phenylpropoxyl (5.) radicals, the fragmentation regioselectivity is essentially governed by the stability of the radical formed by beta-scission. Accordingly, 4. undergoes exclusive C-cyclobutyl bond cleavage to give acetophenone, whereas with 5., competition between C-cyclobutyl and C-ethyl bond cleavage, leading to propiophenone and cyclobutylphenyl ketone in a 2:1 ratio, is observed.  相似文献   

10.
Whereas many studies have been reported on the reactions of aliphatic hydrocarbons, the chemistry of cyclic hydrocarbons has not been explored extensively. In the present work, a theoretical study of the gas-phase unimolecular decomposition of cyclic alkyl radicals was performed by means of quantum chemical calculations at the CBS-QB3 level of theory. Energy barriers and high-pressure-limit rate constants were calculated systematically. Thermochemical data were obtained from isodesmic reactions, and the contribution of hindered rotors was taken into account. Classical transition state theory was used to calculate rate constants. The effect of tunneling was taken into account in the case of CH bond breaking. Three-parameter Arrhenius expressions were derived in the temperature range of 500-2000 K at atmospheric pressure, and the CC and CH bond breaking reactions were studied for cyclic alkyl radicals with a ring size ranging from three to seven carbon atoms, with and without a lateral alkyl chain. For the ring-opening reactions, the results clearly show an increase of the activation energy as the pi bond is being formed in the ring (endo ring opening) in contrast to the cases in which the pi bond is formed on the side chain (exo ring opening). These results are supported by analyses of the electronic charge density that were performed with Atoms in Molecules (AIM) theory. For all cycloalkyl radicals considered, CH bond breaking exhibits larger activation energies than CC bond breaking, except for cyclopentyl for which the ring-opening and H-loss reactions are competitive over the range of temperatures studied. The theoretical results compare rather well with the experimental data available in the literature. Evans-Polanyi correlations for CC and CH beta-scissions in alkyl and cycloalkyl free radicals were derived. The results highlight two different types of behavior depending on the strain energy in the reactant.  相似文献   

11.
[reaction: see text] Substituent effects on the ring-opening reactions of 2-aziridinylmethyl radicals were studied systematically for the first time utilizing the ONIOM(QCISD(T)/6-311+G(2d,2p):B3LYP/6-311+G(3df,2p)) method. It was found that various substituents on the nitrogen atom had a relatively small effect on the ring opening of the 2-aziridinylmethyl radical. A pi-acceptor substituent at the C(1) position reduced the energy barrier for C-C cleavage dramatically, but it increased the energy barrier for C-N cleavage significantly at the same time. When the C(1) substituent is alkyl, the ring opening should always strongly favor the C-N cleavage pathway, regardless of whether the N substituent is alkyl, aryl, or COR. When the C(1) substituent is CHO (or CO-alkyl, CO-aryl, or CO-OR but not CO-NR(2)), the ring opening strongly favors the C-C cleavage pathway, regardless of whether the N substituent is alkyl, aryl, or COR. When the C(1) substituent is aryl (or alkenyl or alkynyl), the ring opening should favor the C-C cleavage pathway if the N substituent is alkyl or COR. If both the C(1) substituent and the N substituent are aryl, the ring opening should proceed via both the C-C and C-N cleavage pathways. The solvent effect on the regioselectivity of the ring opening of the 2-aziridinylmethyl radicals was found to be very small. The substituent effects on C-C cleavage could be explained successfully by the spin-delocalization mechanism. For the substituent effects on C-N cleavage, an extraordinary through-bond pi-acceptor effect must be taken into account. Furthermore, studies on bicyclic 2-aziridinylmethyl radicals showed that the ring strain could also affect the regiochemistry of the ring-opening reactions.  相似文献   

12.
This work investigates the unimolecular dissociation of the 2-buten-2-yl radical. This radical has three potentially competing reaction pathways: C-C fission to form CH3 + propyne, C-H fission to form H + 1,2-butadiene, and C-H fission to produce H + 2-butyne. The experiments were designed to probe the branching to the three unimolecular dissociation pathways of the radical and to test theoretical predictions of the relevant dissociation barriers. Our crossed laser-molecular beam studies show that 193 nm photolysis of 2-chloro-2-butene produces 2-buten-2-yl in the initial photolytic step. A minor C-Cl bond fission channel forms electronically excited 2-buten-2-yl radicals and the dominant C-Cl bond fission channel produces ground-state 2-buten-2-yl radicals with a range of internal energies that spans the barriers to dissociation of the radical. Detection of the stable 2-buten-2-yl radicals allows a determination of the translational, and therefore internal, energy that marks the onset of dissociation of the radical. The experimental determination of the lowest-energy dissociation barrier gave 31 +/- 2 kcal/mol, in agreement with the 32.8 +/- 2 kcal/mol barrier to C-C fission at the G3//B3LYP level of theory. Our experiments detected products of all three dissociation channels of unstable 2-buten-2-yl as well as a competing HCl elimination channel in the photolysis of 2-chloro-2-butene. The results allow us to benchmark electronic structure calculations on the unimolecular dissociation reactions of the 2-buten-2-yl radical as well as the CH3 + propyne and H + 1,2-butadiene bimolecular reactions. They also allow us to critique prior experimental work on the H + 1,2-butadiene reaction.  相似文献   

13.
Basic fragmentation reaction of dialkyl alkylphosphinates under the conditions of electron ionization proceeds in two steps. In the first step occurs cleavage of C-O bond and splitting the olefin radical off. The intermediate ion formed therewith exerts further fragmentation by the similar way. Peaks of the intermediate ions occurs in the spectra of all dialkyl alkylphosphonates except O-methyl derivatives. In the case of branching at α-carbon atoms of alkoxy radicals cleavage of the first carbon-carbon bond of the alkoxy radical unlike the case of alkyl fluorophosphonates, in the intermediate ion rather than in molecular ion and accompanied by the elimination of alkane. These found regularities allow to explain principal fragmentation pathways of a wide series of phosphoric acids esters of general formula (RO) n P(O)X n?3 (where X is R, Hal, or OMe) with both linear and branched in α-position alkoxy radicals.  相似文献   

14.
This article describes the synthetic application of ketone-derived oxaziridines as alkyl radical precursors in copper-catalyzed Carbon-Carbon bond formation reactions. Experimental and computational studies indicate a free radical mechanism, where alkyl radicals are efficiently generated via cleavage of a Carbon-Carbon bond of oxaziridines. Acyclic and unstrained cyclic oxaziridines are applicable to the present radical process, allowing for the generation of various alkyl radicals with good functional group compatibility.  相似文献   

15.
We use a combination of crossed laser-molecular beam experiments and velocity map imaging experiments to investigate the primary photofission channels of chloroacetone at 193 nm; we also probe the dissociation dynamics of the nascent CH(3)C(O)CH(2) radicals formed from C-Cl bond fission. In addition to the C-Cl bond fission primary photodissociation channel, the data evidence another photodissociation channel of the precursor, C-C bond fission to produce CH(3)CO and CH(2)Cl. The CH(3)C(O)CH(2) radical formed from C-Cl bond fission is one of the intermediates in the OH + allene reaction en route to CH(3) + ketene. The 193 nm photodissociation laser allows us to produce these CH(3)C(O)CH(2) radicals with enough internal energy to span the dissociation barrier leading to the CH(3) + ketene asymptote. Therefore, some of the vibrationally excited CH(3)C(O)CH(2) radicals undergo subsequent dissociation to CH(3) + ketene products; we are able to measure the velocities of these products using both the imaging and scattering apparatuses. The results rule out the presence of a significant contribution from a C-C bond photofission channel that produces CH(3) and COCH(2)Cl fragments. The CH(3)C(O)CH(2) radicals are formed with a considerable amount of energy partitioned into rotation; we use an impulsive model to explicitly characterize the internal energy distribution. The data are better fit by using the C-Cl bond fission transition state on the S(1) surface of chloroacetone as the geometry at which the impulsive force acts, not the Franck-Condon geometry. Our data suggest that, even under atmospheric conditions, the reaction of OH with allene could produce a small branching to CH(3) + ketene products, rather than solely producing inelastically stabilized adducts. This additional channel offers a different pathway for the OH-initiated oxidation of such unsaturated volatile organic compounds, those containing a C=C=C moiety, than is currently included in atmospheric models.  相似文献   

16.
Electron capture by doubly charged peptide cations leads to neutral losses in addition to N-C(α) bond cleavages that give c and z fragments. In this work we discuss the influence of amino acid sequence on hydrogen versus ammonia loss and the propensity for subsequent partial side-chain cleavage after ammonia loss to give w fragment ions. Experiments were done on two series of doubly protonated dipeptides, [XK+2H](2+) and [XR+2H](2+), where X is one of the twenty common amino acid residues, excluding aspartic acid (D), and K and R are lysine and arginine, respectively. While it was previously established that NH(3) is lost exclusively from the N-terminal ammonium group and not from side-chain ammonium groups, we find here that ammonia can be lost from guanidinium radicals as well. The ratio between H loss and NH(3) loss reveals some information on internal ionic hydrogen bonds and peptide conformation since proton sharing between the N-terminal ammonium group and a basic side chain decreases the probability for NH(3) loss due to a lower recombination energy and as a result reduced capture probability. The abundance of w ions was found to correlate with the reaction energy for their formation; highest yield was found for CK and lowest for AK and HK. The survival rate of charge-reduced species was higher for XR than for XK, which is likely linked to the formation of long-lived C(α) radicals in the latter case. The probability for N-C(α) bond cleavage is smaller on average for XR than for XK which indicates that hydrogen transfer from the ε-ammonium radical to the amide group triggers some of the cleavages, or is a result of the different distances between the amide group and the charges in XR and XK. Finally, our data support the previous concept that charge partitioning between c and z fragments can be explained by competition between the two fragments for the proton.  相似文献   

17.
Homolytic substitution at the sulfur atom of beta-(phenylsulfanyl)vinyl radicals, obtained by radical reaction of benzenethiol with easily accessible alkyl 4-pentynyl sulfides, is a mild, effective, tin-free route for the generation of all types of alkyl radicals. This protocol can be employed in reductive defunctionalizations as well as cyclizations onto both electron-rich and electron-poor C-C double bonds.  相似文献   

18.
The unimolecular fragmentation reactions of the radical cations of diethyl, diisopropyl, dipropyl, isopropyl propyl, and di(tert-butyl) peroxide have been investigated by mass spectrometric and isotopic labeling techniques. Two competing pathways for unimolecular decomposition in the μs time regime (metastable ions) are observed: i) A combination of an α-C? C bond cleavage and a H migration gives rise to proton-bound dimers of two ketone or aldehyde molecules. ii) Ion/dipole complexes of alkyl cations and alkylperoxy radicals are generated by C–O bond cleavage. These complexes either exhibit direct losses of alkylperoxy radicals, or they rearrange via a coupled proton and H-atom transfer, this sequence of unprecedented isomerizations is completed by losses of alkyl radicals. Collisional activation experiments confirm that the ionic products of the latter process correspond to RR′C?OOH+; these ions can be regarded as protonated carbonyl oxides. In addition, we observe the elimination of alkenes leading to hydroperoxide radical cations and the expulsion of HO radicals. The latter process implies a C? C bond formation step between the two alkyl fragments leading to higher alkyl cations.  相似文献   

19.
一元硝酸酯热解反应的理论研究   总被引:9,自引:1,他引:9  
运用SCF-AM1-MO方法,计算研究了十个一元硝酸酯的热解反应,揭示了烷基取代对反应过程的影响.UHF计算O-NO2键均裂产生RCH2O·和·NO2两个自由基的反应活化能较低,是硝酸酯热解的主要途径;RHF计算α-H转移环消除产生RCHO和HONO的反应具有较高活化能,且α-C上含两个以上取代基时不发生该反应.还探索性地进行了C-O键断裂的UHF和RHF计算..  相似文献   

20.
In the present work, the wavelength-dependent mechanistic photochemistry of glyoxal in the gas phase has been explored by ab initio calculations of potential-energy surfaces, surface crossing points, and adiabatic and nonadiabatic rates. The CHOCHO molecules in S1 by photoexcitation at 393-440 nm mainly decay to the ground state via internal conversion, which is followed by molecular eliminations to form CO, H2CO,H2, and HCOH. Upon photodissociation of CHOCHO at 350-390 nm, intersystem crossing to T1 followed by the C-C bond cleavage is the dominant process in this wavelength range, which is responsible for the formation of the CHO radicals. The C-C and C-H bond cleavages along the S1 pathway are energetically accessible upon photodissociation of CHOCHO at 290-310 nm, which can compete with the S1-->T1 intersystem crossing process. The present study predicts that the C-H bond cleavage on the S1 surface is probably a new photolysis pathway at high excitation energy, which has not been observed experimentally. In addition, the trans-cis isomerization is predicted to occur more easily in the ground state than in the excited states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号