首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
卢天健  徐峰 《力学学报》2010,42(4):719-732
研究目的是开发一种数学方法来计算传热过程、热引起的力学响应以及相应的疼痛等级, 从而对临床上应用的各种加热疗法之间的差别进行定量评估. 采用基于有限差分法的数值模拟方法, 基于无限大和均匀化假设, 分析了各种热疗法中皮肤组织的温度、烧伤和热应力分布. 研究发现: 充血对热损伤的影响很小, 但对皮肤的温度分布影响很大, 而这又反过来显著影响由此产生的热应力场; 对于激光加热, 光波越短则峰值温度越高, 但峰值更接近皮肤表面温度; 激光和微波加热所产生的热应力集中于表皮顶层, 因为发热量沿皮肤深度方向呈指数衰减; 薄角质层(常常被忽略)对皮肤组织的热力学响应起主导作用.   相似文献   

2.
Biothermomechanics of skin is highly interdisciplinary involving bioheat transfer, burn damage, biomechanics and neurophysiology. During heating, thermally induced mechanical stress arises due to the thermal denaturation of collagen, resulting in macroscale shrinkage. Thus, the strain, stress, temperature and thermal pain/damage are highly correlated; in other words, the problem is fully coupled. The aim of this study is to develop a computational approach to examine the heat transfer process and the heat-induced mechanical response, so that the differences among the clinically applied heating modalities can be quantified. Exact solutions for temperature, thermal damage and thermal stress for a single-layer skin model were first derived for different boundary conditions. For multilayer models, numerical simulations using the finite difference method (FDM) and finite element method (FEM) were used to analyze the temperature, burn damage and thermal stress distributions in the skin tissue. The results showed that the thermomechanical behavior of skin tissue is very complex: blood perfusion has little effect on thermal damage but large influence on skin temperature distribution, which, in turn, influences significantly the resulting thermal stress field; the stratum corneum layer, although very thin, has a large effect on the thermomechanical behavior of skin, suggesting that it should be properly accounted for in the modeling of skin thermal stresses; the stress caused by non-uniform temperature distribution in the skin may also contribute to the thermal pain sensation.  相似文献   

3.
李艾伦  傅卓佳  李柏纬  陈文 《力学学报》2018,50(5):1198-1205
生物传热分析在低温外科手术、肿瘤热疗、病热诊断等临床医学治疗和诊断中有着广泛的应用. 由于健康皮肤组织内肿瘤的存在使得肿瘤附近区域的温度会明显升高, 这一特性常被用于检测皮肤组织内的肿瘤生长, 因此有必要开展生物传热数值分析的研究. 本文以含肿瘤的皮肤组织为研究对象, 将一种新型区域型无网格配点法——广义有限差分法应用于能描述含肿瘤皮肤组织传热过程的Pennes方程求解. 广义有限差分法利用泰勒展开式与移动最小二乘法将计算区域内的每个离散点上的物理量导数表示成其与邻近点物理量及权重系数的线性组合, 进而构建得到仅含各离散点未知物理量的线性方程组. 该方法不仅具有无需划分网格、避免数值积分等无网格配点法的优点, 同时还克服了大多数无网格配点法中插值矩阵高度病态的问题, 为此类方法在大规模工程数值计算中的应用提供了可能性. 本文首先介绍了模拟含肿瘤皮肤组织传热过程的广义有限差分法离散模型, 随后通过不含肿瘤与含规则形状肿瘤的基准算例, 检验广义有限差分法的计算精度与收敛性; 在此基础上, 通过数值模拟研究不同肿瘤形状及肿瘤位置分布对皮肤组织内温度分布的影响.   相似文献   

4.
5.
The mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent fluid is analyzed using similarity solution technique. Wall temperature and stretching velocity are assumed to have specific exponential function forms. The influence of buoyancy along with viscous dissipation on the convective transport in the boundary layer region is analyzed in both aiding and opposing flow situations. The flow is governed by the mixed convection parameter Gr/Re2. The velocity and temperature inside the boundary layer are observed to be influenced by the parameters like Prandtl number Pr, Gebhart number Gb. Significant changes are observed in non-dimensional skin friction and heat transfer coefficients due to viscous dissipation in the medium. The flow and temperature distributions inside the boundary layer are analyzed and the results for non-dimensional skin friction and heat transfer coefficients are discussed through computer generated plots.  相似文献   

6.
 The steady mixed convection flow over a vertical wedge with a magnetic field embedded in a porous medium has been investigated. The effects of the permeability of the medium, surface mass transfer and viscous dissipation on the flow and temperature fields have been included in the analysis. The coupled nonlinear partial differential equations governing the flow field have been solved numerically using the Keller box method. The skin friction and heat transfer are found to increase with the parameters characterizing the permeability of the medium, buoyancy force, magnetic field and pressure gradient. However the effect of the permeability and magnetic field on the heat transfer is very small. The heat transfer increases with the Prandtl number, but the skin friction decreases. The buoyancy force which assists the forced convection flow causes an overshoot in the velocity profiles. Both the skin friction and heat transfer increase with suction and the effect of injection is just the reverse. Received on 21 May 1999  相似文献   

7.
8.
The influences of variable viscosity and buoyancy force on laminar boundary layer flow and heat transfer due to a continuous flat plate are examined. The deviation of the velocity and temperature fields as well as of the skin friction and heat transfer results from their constant values are determined by means of similarity solutions.  相似文献   

9.
Jet impingement onto a hole with elevated wall temperature can be associated with the high‐temperature thermal drilling, where the gas jet is used for shielding the hole wall from the high‐temperature oxidation reactions as observed in the case of laser drilling. In laser processing, the molten flow from the hole wall occurs; and in the model study, the hole wall velocity resembling the molten flow should be accounted for. In the present study, gas jet impingement onto tapered hole with elevated temperature is considered and the heat transfer rates as well as skin friction at the hole wall surface are predicted. The velocity of molten flow from the hole wall determined from the previous study is adopted in the simulations and the effect of hole wall velocity on the heat transfer rates and skin friction is also examined. It is found that the Nusselt number and skin friction at the hole wall in the regions of hole inlet and exit attain high values. The influence of hole wall velocity on the Nusselt number and skin friction is found not to be very significant. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
皮肤组织压缩行为与热损伤的相关性   总被引:2,自引:0,他引:2  
皮肤组织生物热力学是一门涉及生物传热、烧伤、生物力学和生理神经学等的高度交叉的新兴学科.皮肤组织的热力学性能表征对皮肤组织生物热力学的建立和完善以及许多医学应用领域都具有相当重要的作用.然而,目前对于皮肤组织力学性质和温度之间的量化关系却几乎没有开展研究,试图揭示高温引发的热损伤对皮肤组织力学性能影响的研究也相当少.该文重点描述了猪皮在各种热损伤度下的压缩行为,讨论了与热损伤与皮肤压缩行为的相关性及机理.结果表明:皮肤的刚度随热损伤度的提高而下降,并且具有不同损伤度下的应变速率敏感性,这些特性主要是由皮肤的水合作用变化所引起的.  相似文献   

11.
A numerical treatment for axisymmetric flow and heat transfer due to a stretching cylinder under the influence of a uniform magnetic field and prescribed surface heat flux is presented. Numerical results are obtained for dimensionless velocity, temperature, skin friction coefficient and Nusselt number for several values of the suction/injection, magnetic and curvature parameters as well as the Prandtl number. The present study reveals that the controlling parameters have strong effects on the physical quantities of interest. It is seen that the magnetic field enhances the dimensionless temperature inside the thermal boundary layer, whereas it reduces the dimensionless velocity inside the hydrodynamic boundary layer. Heat transfer rate reduces, while the skin friction coefficient increases with magnetic field.  相似文献   

12.
This study investigates mixed convection heat transfer about a permeable vertical plate in the presence of magneto and thermal radiation effects. The effects of the mixed convection parameter, the radiation–conduction parameter, the surface temperature parameter, the magnetic parameter and the suction/injection parameter on the local skin friction and local heat transfer parameters are presented and analyzed.  相似文献   

13.
This study explores the effects of heat transfer on the Williamson fluid over a porous exponentially stretching surface. The boundary layer equations of the Williamson fluid model for two dimensional flow with heat transfer are presented. Two cases of heat transfer are considered, i.e., the prescribed exponential order surface temperature (PEST) case and the prescribed exponential order heat flux (PEHF) case. The highly nonlinear partial differential equations are simplified with suitable similar and non-similar variables, and finally are solved analytically with the help of the optimal homotopy analysis method (OHAM). The optimal convergence control parameters are obtained, and the physical fea- tures of the flow parameters are analyzed through graphs and tables. The skin friction and wall temperature gradient are calculated.  相似文献   

14.
M. Kumari  G. Nath 《Meccanica》2014,49(5):1263-1274
The steady mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent Maxwell fluid in the presence of magnetic field, viscous dissipation and Joule heating have been studied. The stretching velocity, surface temperature and magnetic field are assumed to have specific exponential function forms for the existence of the local similarity solution. The coupled nonlinear ordinary differential equations governing the local similarity flow and heat transfer have been solved numerically by Chebyshev finite difference method. The influence of the buoyancy parameter, viscous dissipation, relaxation parameter of Maxwell fluid, magnetic field and Prandtl number on the flow and heat transfer has been considered in detail. The Nusselt number increases significantly with the Prandtl number, but the skin friction coefficient decreases. The Nusselt number slightly decreases with increasing viscous dissipation parameter, but the skin friction coefficient slightly increases. Maxwell fluid reduces both skin friction coefficient and Nusselt number, whereas buoyancy force enhances them.  相似文献   

15.
The present work investigates the micropolar fluid flow due to a permeable stretching sheet and the resulting heat transfer. Unlike the existing numerical works on the flow phenomenon in the literature, the prime interest here is to analytically work out shape of the solutions and identify whether they are unique. Indeed, unique solutions are detected and presented in the exact formulas for the associated boundary layer equations. Temperature field influenced by the microrotation is also mathematically resolved in the cases of constant wall temperature, constant heat flux and Newtonian heating. To discover the salient physical features of many mechanisms acting on the considered problem, it is adequate to have the analytical velocity and temperature fields and also closed-form skin friction/couple stress/heat transfer coefficients, all as given in the current paper. For instance, the practically significant rate of heat transfer is represented by a single formula valid for all three temperature cases.  相似文献   

16.
《力学快报》2022,12(5):100357
Hybrid nanofluids have attracted burgeoning attention owing to their outstanding capacity to improve heat transfer. The influence of velocity and temperature slip parameter and nanoparticls' (NPs') volume fraction on a vertical plate in the existence of suction has been explored in this work. The investigation's controlling partial differentiation equations were transformed into a conventional differential equation mechanism using resemblance modifications. Equations were then solved employing the fifth-order Runge-Kutta method. The skin coefficient of friction, temperature, and temperature gradient all rise when the volume percentage of NPs increases from 0 to 2%. Furthermore, a rise in the temperature slip variable was linked to a drop in the Nusselt number (heat transfer).The Nusselt number increased 0.15% and 5.63% respectively when the velocity slip parameter enhanced from 0 to 5 and the NPs volume percentage were increased from 0 to 1.5%. Furthermore, an increase in the temperature slip from 0 to 3 inflated the x-direction skin friction coefficient 8.2%, while inflation in the velocity slip from 0 to 5 was associated with a decline in the x-direction skin friction coefficient 95%.  相似文献   

17.
The unsteady laminar free convection boundary layer flows around two-dimensional and axisymmetric bodies placed in an ambient fluid of infinite extent have been studied when the flow is driven by thermal buoyancy forces and buoyancy forces from species diffusion. The unsteadiness in the flow field is caused by both temperature and concentration at the wall which vary arbitrarily with time. The coupled nonlinear partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. Computations have been performed for a circular cylinder and a sphere. The skin friction, heat transfer and mass transfer are strongly dependent on the variation of the wall temperature and concentration with time. Also the skin friction and heat transfer increase or decrease as the buoyancy forces from species diffusion assist and oppose, respectively, the thermal buoyancy force, whereas the mass transfer rate is higher for small values of the ratio of the buoyancy parameters than for large values. The local heat and mass transfer rates are maximum at the stagnation point and they decrease progressively with increase of the angular position from the stagnation point.  相似文献   

18.
The steady nonlinear hydromagnetic flow of an incompressible, viscous and electrically conducting fluid with heat transfer over a surface of variable temperature stretching with a power-law velocity in the presence of variable transverse magnetic field is analysed. Utilizing similarity transformation, governing nonlinear partial differential equations are transformed to nonlinear ordinary differential equations and they are numerically solved using fourth-order Runge–Kutta shooting method. Numerical solutions are illustrated graphically by means of graphs. The effects of magnetic field, stretching parameter and Prandtl number on velocity, skin friction, temperature distribution and rate of heat transfer are discussed.  相似文献   

19.
A boundary layer analysis is presented for a study of the influence of radiation and buoyancy on heat and mass transfer characteristics of continuous surfaces having a prescribed variable surface temperature and stretched with rapidly decreasing power law velocities. The effects of suction in the presence of a quiescent fluid medium of constant temperature are considered. Rosseland approximation is used to describe the radiative heat flux in the energy equation. The transformed governing equations are solved numerically and the velocity and temperature profiles as well as the local Nusselt number and skin friction coefficient are presented. Results show that the effect of radiation is to keep the molten mass away from the slot warmer, reduces the friction factor and increases the heat transfer rate compared to the case with no radiation.  相似文献   

20.
A finite volume model was developed to simulate transient heat transfer in protective clothing during flash fire exposure. The model accounts for the combined conduction-radiation heat transfer in the air gap between the fabric and skin. The variation in the fabric and air gap properties with temperature and the thermochemical reactions in the fabric are also considered. This study investigates the influence of the air gap in protective clothing on the energy transfer through the clothing and hence on its performance. Different parameters that affect the conduction-radiation heat transfer through the air gap such as the air gap absorption coefficient and the air gap width were studied. Finally, the paper demonstrates that an innovative and potentially significant way to improve protective clothing performance is to reduce the emissivity on the backside of the fabric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号