共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
深紫外飞秒激光兼具深紫外激光单光子能量高和飞秒激光峰值功率高的优势,这使得深紫外飞秒激光在半导体晶圆检测和角分辨光电子能谱等领域被广泛应用,但是色散导致的群速度失配使得深紫外飞秒激光的输出变得十分困难,本文基于掺镱光纤飞秒激光器,实现了一种基于延迟线的深紫外飞秒激光脉冲产生方案.通过优化延迟线精确补偿时间走离,基于掺镱飞秒光纤激光五倍频获得了重复频率为1 MHz、中心波长为206 nm的深紫外飞秒激光输出,其平均功率102 mW,从近红外到深紫外的转换效率为4.25%. 相似文献
9.
10.
掺镱氯酸钆钙(Yb:CaYAlO4,简称Yb:CYA)晶体具有生长容易、增益曲线宽广平坦以及比热容高和导热性好等优点,是产生飞秒超短脉冲的优异介质晶体。本文介绍了一种基于Yb:CYA晶体的全固态克尔透镜锁模GHz飞秒振荡器,采用功率为8 W的980 nm光纤激光作为泵浦源,腔型为四镜环形腔结构,Yb:CYA晶体厚度为3 mm。该振荡器能够产生中心波长1 051 nm、平均输出功率1.7 W的GHz飞秒脉冲,脉冲宽度为207 fs。基于Yb:CYA晶体的振荡器实现了GHz重频瓦级飞秒脉冲输出,为进一步基于此振荡器实现高重频飞秒光学频率梳打下了坚实基础。 相似文献
12.
介绍了一种基于新型非线性晶体Ba1-xB2-y-zO4SixAlyGaz 的可调谐深紫外飞秒激光光源. 从理论上分析了基频光和倍频光在通过非线性晶体时所造成的空间走离和群速度失配, 为了补偿空间走离以及波长调谐过程中晶体折射造成的光束偏离现象, 将两块相同的倍频晶体成镜像放置来产生二次谐波. 并调节延迟线的长度来补偿基频光和倍频光之间的群速度失配, 从而提高和频转换效率. 然后通过和频方式进行三倍频和四倍频来突破晶体相位匹配条件的限制, 产生了波长低于200 nm的深紫外飞秒激光. 利用钛宝石激光器提供基频光光源, 最终在250–300 nm, 192.5–210 nm 范围内获得了高重频、可调谐超短脉冲紫外和深紫外激光. 并在基频光波长为800 nm时, 得到的二倍频、三倍频和四倍频的功率分别为1.28 W, 194 mW和5.8 mW, 相对于前一级的转换效率依次为46.14%, 15.16%和3%. 采用互相关法测量得到266.7 nm紫外激光的脉冲宽度约为640.4 fs. 相似文献
13.
14.
15.
以大模场面积光子晶体光纤飞秒激光系统为基频光源,利用非线性频率上转换的方法,获得了高功率高重复频率多波长的飞秒激光脉冲.理论分析并实验验证了聚焦透镜的焦距对倍频光横向模场分布的影响,透镜焦距越长,模场质量越好.在基频光平均功率为218 W,脉冲宽度为110 fs,重复频率为50 MHz的条件下,经过二倍频、三倍频和四倍频获得波长分别为520,347和261 nm的飞秒激光,其平均功率分别达105,47和214 W.二倍频和三倍频的转换效率分别为482%和216%,二倍频到四倍频的转换效率为20
关键词:
超快光学
紫外飞秒激光
频率上转换
光子晶体光纤激光器 相似文献
16.
17.
18.
19.
要建造大功率超强激光系统,必须将nJ量级的种子进行放大,以得到mJ量级以及更高能量的激光输出.为达到这个目的,必须使种子能量指数增加,再生腔放大器是实现这一目的的良好途径;同时,为了得到更稳定的激光输出,须采用高重复频率的泵浦源.为此,设计了一种kHz重复频率激光泵浦的再生放大器,使用15 mJ的527 nm的绿光泵浦,得到了约2.3 mJ的800 nm放大激光输出,同时,对其输出激光的光谱特性进行了测量,将带宽为40 nm的种子注入后,得到了光谱带宽约为30 nm激光输出. 相似文献