首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
用I类匹配BBO晶体对近红外波段钛宝石飞秒脉冲激光做倍频实验,取得近30%的转换效率,对飞秒脉冲激光倍频的有关问题进行了分析讨论。  相似文献   

2.
用互类匹配BBO晶体对近红外波段钛宝石飞秒脉冲激光做倍频实验,取得近30%的转换效率,对飞秒脉冲激光倍频的有关问题进行了分析讨论.  相似文献   

3.
飞秒掺钛蓝宝石激光三倍频理论和实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
刘运全  张杰  梁文锡  王兆华 《物理学报》2005,54(4):1593-1598
从理论和实验上分别研究了飞秒掺钛蓝宝石激光二倍频和三倍频的非线性频率转换过程.采 用Ⅰ类相位匹配非共线和频方法得到飞秒掺钛蓝宝石激光的三倍频2601nm输出,转换效 率达64%, 脉冲宽度为169fs.这为时间分辨电子显微镜提供了一种超短脉冲的紫外光源. 关键词: 飞秒激光 三倍频 时间分辨 BBO晶体  相似文献   

4.
飞秒激光在BBO晶体中倍频效率的数值计算   总被引:1,自引:1,他引:1       下载免费PDF全文
吕铁铮  王韬  钱列加  鲁欣  魏志义  张杰 《物理学报》2002,51(6):1268-1271
采用分步傅里叶法对飞秒激光在BBO晶体中倍频过程的效率进行了数值计算,分析表明这种方法既避免了其他数学方法的繁琐,又直观地展现了倍频过程的物理本质.针对有关实验条件,计算了脉宽为100fs的激光脉冲通过2mm长、Ⅰ类相位匹配的BBO晶体的倍频效率,计算结果与实验上对同样晶体倍频效率的测量是一致的. 关键词: 飞秒激光 倍频  相似文献   

5.
万云芳  韩克祯  左春华  何京良 《光子学报》2007,36(12):2182-2186
报道了一种侧面泵浦Nd∶YAG、声光调Q、LBO晶体腔外倍频和三倍频的355 nm准连续波紫外激光器.采用结构简单、紧凑的平-凹腔设计,在152 W的泵浦功率下,重复频率5 kHz时,获得平均功率1.62 W的355 nm TEM00模激光输出,三倍频的转换效率为25%;重复频率1 kHz时,获得平均功率518 mW、单脉冲能量518 μJ、脉宽17 ns、峰值功率高达30 kW的紫外激光输出.  相似文献   

6.
BBO四倍频全固态Nd:YVO4紫外激光器   总被引:11,自引:0,他引:11       下载免费PDF全文
报道了用BBO晶体对激光二极管抽运Nd:YVO4晶体声光调Q产生的1.064μm激光进行四倍频,实现平均功率为63mW准连续波266nm紫外激光运转,重复频率为12.5kHz、单脉冲能量5μJ、峰值功率达252W,绿光-紫外光转换效率达11%.  相似文献   

7.
BBO四倍频全固态Nd:YVO4紫外激光器   总被引:12,自引:0,他引:12       下载免费PDF全文
报道了用BBO晶体对激光二极管抽运Nd:YVO4晶体声光调Q产生的1.064μm激光 进行四倍频,实现平均功率为63mW准连续波266nm紫外激光运转,重复频率为12.5kHz、单 脉冲能量5μJ、峰值功率达252W,绿光-紫外光转换效率达11%. 关键词: 266nm紫外激光 四倍频 全固态  相似文献   

8.
深紫外飞秒激光兼具深紫外激光单光子能量高和飞秒激光峰值功率高的优势,这使得深紫外飞秒激光在半导体晶圆检测和角分辨光电子能谱等领域被广泛应用,但是色散导致的群速度失配使得深紫外飞秒激光的输出变得十分困难,本文基于掺镱光纤飞秒激光器,实现了一种基于延迟线的深紫外飞秒激光脉冲产生方案.通过优化延迟线精确补偿时间走离,基于掺镱飞秒光纤激光五倍频获得了重复频率为1 MHz、中心波长为206 nm的深紫外飞秒激光输出,其平均功率102 mW,从近红外到深紫外的转换效率为4.25%.  相似文献   

9.
全固态三基色激光大屏幕投影显示实验   总被引:6,自引:0,他引:6  
三基色激光显示具有亮度高、色彩鲜艳、清晰度高、功耗低等优点,文章介绍了激光显示原理,并报道了用全固态非线性频率转换技术获得波长分别为671nm,532nm,和473nm的红绿蓝三基色激光,在国内首次实现全固态激光全色投影显示实验,同时提出了今后全固态激光显示的发展方向。  相似文献   

10.
掺镱氯酸钆钙(Yb:CaYAlO4,简称Yb:CYA)晶体具有生长容易、增益曲线宽广平坦以及比热容高和导热性好等优点,是产生飞秒超短脉冲的优异介质晶体。本文介绍了一种基于Yb:CYA晶体的全固态克尔透镜锁模GHz飞秒振荡器,采用功率为8 W的980 nm光纤激光作为泵浦源,腔型为四镜环形腔结构,Yb:CYA晶体厚度为3 mm。该振荡器能够产生中心波长1 051 nm、平均输出功率1.7 W的GHz飞秒脉冲,脉冲宽度为207 fs。基于Yb:CYA晶体的振荡器实现了GHz重频瓦级飞秒脉冲输出,为进一步基于此振荡器实现高重频飞秒光学频率梳打下了坚实基础。  相似文献   

11.
12.
介绍了一种基于新型非线性晶体Ba1-xB2-y-zO4SixAlyGaz 的可调谐深紫外飞秒激光光源. 从理论上分析了基频光和倍频光在通过非线性晶体时所造成的空间走离和群速度失配, 为了补偿空间走离以及波长调谐过程中晶体折射造成的光束偏离现象, 将两块相同的倍频晶体成镜像放置来产生二次谐波. 并调节延迟线的长度来补偿基频光和倍频光之间的群速度失配, 从而提高和频转换效率. 然后通过和频方式进行三倍频和四倍频来突破晶体相位匹配条件的限制, 产生了波长低于200 nm的深紫外飞秒激光. 利用钛宝石激光器提供基频光光源, 最终在250–300 nm, 192.5–210 nm 范围内获得了高重频、可调谐超短脉冲紫外和深紫外激光. 并在基频光波长为800 nm时, 得到的二倍频、三倍频和四倍频的功率分别为1.28 W, 194 mW和5.8 mW, 相对于前一级的转换效率依次为46.14%, 15.16%和3%. 采用互相关法测量得到266.7 nm紫外激光的脉冲宽度约为640.4 fs.  相似文献   

13.
《光子学报》2021,50(6)
利用飞秒激光辅助刻蚀技术,在蓝宝石表面实现了周期、占空比及高度可调的光栅结构。解决了飞秒激光加工硬脆材料时表面质量较差、碎屑堆积导致的加工精度降低和难以制备深结构的问题。蓝宝石光栅结构的粗糙度从78 nm(激光直写后)降低到了7 nm(干法刻蚀后),实现了周期为800 nm光栅,以及深宽比为4的蓝宝石微结构的制备。飞秒激光辅助刻蚀技术能够制备蓝宝石表面高平滑光栅,并对光栅各级次衍射效率进行提升。  相似文献   

14.
利用“星光Ⅱ”高功率激光装置三倍频激光(波长0.35μm,能量5—90J,焦斑直径约200μm,脉冲宽度400—800ps)辐照多种材料(C,Al,Cu,Au)靶,对于不同激光功率密度,研究软X射线转换和发射能谱.结合0.35μm激光辐照Al靶的质量烧蚀率和等离子体喷射速度与激光功率密度的定标关系进行数值模拟,对于激光功率在1013—1015W/cm2理论模拟结果与实验结果符合得很好 关键词:  相似文献   

15.
以大模场面积光子晶体光纤飞秒激光系统为基频光源,利用非线性频率上转换的方法,获得了高功率高重复频率多波长的飞秒激光脉冲.理论分析并实验验证了聚焦透镜的焦距对倍频光横向模场分布的影响,透镜焦距越长,模场质量越好.在基频光平均功率为218 W,脉冲宽度为110 fs,重复频率为50 MHz的条件下,经过二倍频、三倍频和四倍频获得波长分别为520,347和261 nm的飞秒激光,其平均功率分别达105,47和214 W.二倍频和三倍频的转换效率分别为482%和216%,二倍频到四倍频的转换效率为20 关键词: 超快光学 紫外飞秒激光 频率上转换 光子晶体光纤激光器  相似文献   

16.
具有特殊浸润性的功能表面在生产生活中发挥着重要作用.同时,飞秒激光加工以其独特的优势,成为制备特殊浸润性功能表面的重要方式.本文通过自然界中生物表面微结构与实际应用的联系,讨论了飞秒激光制备多种微结构的方法,从"双面神"表面、智能响应超疏表面以及润滑表面等三个方面对基于飞秒激光制备特殊浸润性功能表面进行了总结.对飞秒激...  相似文献   

17.
在350μm厚的碳化硅样品上加工了直径200μm的微孔,研究了基于水辅助的飞秒激光碳化硅微孔加工方法.探讨了空气中加工微孔与水辅助加工微孔的差别.水降低了加工区域的温度,大大减少了氧化反应的发生,而且加工产生的碎屑由水带走,避免了热影响区的形成,降低了样品粗糙度.加工出的微孔侧壁光滑,无热影响区,在工业中有实际应用的价...  相似文献   

18.
19.
要建造大功率超强激光系统,必须将nJ量级的种子进行放大,以得到mJ量级以及更高能量的激光输出.为达到这个目的,必须使种子能量指数增加,再生腔放大器是实现这一目的的良好途径;同时,为了得到更稳定的激光输出,须采用高重复频率的泵浦源.为此,设计了一种kHz重复频率激光泵浦的再生放大器,使用15 mJ的527 nm的绿光泵浦,得到了约2.3 mJ的800 nm放大激光输出,同时,对其输出激光的光谱特性进行了测量,将带宽为40 nm的种子注入后,得到了光谱带宽约为30 nm激光输出.  相似文献   

20.
利用旋转主平面的方法实现Ⅰ类匹配BBO晶体的三倍频,理论上计算了三倍频输出光强和旋转角度的关系。实现了准连续钛宝石744nm激光三倍频输出,得到光束质量好的248nm激光,可以作为准分子主振荡放大器的种子源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号