共查询到20条相似文献,搜索用时 15 毫秒
1.
针对模糊C均值(FCM)聚类图像分割需要预先知道类别数及计算量较大的问题,提出了新的快速FCM改进方法。首先,利用边缘信息进行邻域搜索得到种子像素;通过区域生长快速获得区域分割类别数和对应的聚类中心值,并将图像分成确定类别的区域和未确定类别的区域;最后利用所得的聚类中心值和 FCM算法对未确定类别区域进行聚类。实验证明,本文提出的改进方法大大减少了计算量,显著提高了图像分割速度,而且由于聚类考虑了相邻像素点的关系,图像分割结果能够清晰地保留目标轮廓,提高了图像分割的质量。 相似文献
2.
针对模糊C均值(FCM)聚类图像分割需要预先知道类别数及计算量较大的问题,提出了新的快速FCM改进方法。首先,利用边缘信息进行邻域搜索得到种子像素;通过区域生长快速获得区域分割类别数和对应的聚类中心值,并将图像分成确定类别的区域和未确定类别的区域;最后利用所得的聚类中心值和 FCM算法对未确定类别区域进行聚类。实验证明,本文提出的改进方法大大减少了计算量,显著提高了图像分割速度,而且由于聚类考虑了相邻像素点的关系,图像分割结果能够清晰地保留目标轮廓,提高了图像分割的质量。 相似文献
3.
提出了结合稀疏编码和空间约束的红外图像聚类分割新算法, 在稀疏编码的基础上融合聚类算法, 扩展了传统的基于K-means聚类的图像分割方法. 结合稀疏编码的聚类分割算法能有效融合图像的局部信息, 便于利用像素之间的内在相关性, 但是对于分割会出现过分割和像素难以归类的问题.为此, 在字典的学习过程中, 将原子的聚类算法引入其中, 有助于缩减字典中原子所属类别的数目, 防止出现过分割; 考虑到像素及其邻域像素具有类别属性一致性的特点, 引入了空间类别属性约束信息, 并给出了一种交替优化算法. 联合学习字典、稀疏系数、聚类中心和隶属度, 将稀疏编码系数同原子对聚类中心的隶属程度相结合, 构造像素归属度来判断像素所属的类别. 实验结果表明, 该方法能够有效提高红外图像重要区域的分割效果, 具有较好的鲁棒性.
关键词:
图像分割
稀疏编码
聚类
空间约束 相似文献
4.
针对脑部核磁共振图像中含有噪音、对比度低及肿瘤边界不连续模糊等造成肿瘤难以准确分割的问题,提出了一种基于空频域图像增强的脑肿瘤分割算法.首先,采用空频域相结合的增强方法对图像进行增强处理.该方法利用基于邻域的方法,结合了空间域增强算法与基于方向滤波器组的频率域增强算法,具有它们优点的同时,克服了前者导致的图像细节模糊的缺陷及后者带来的对比度降低的缺陷.然后,利用液体向量流的分割方法,对增强后的图像进行分割,得到脑肿瘤区域.实验结果表明,本文的增强方法在增强肿瘤边界特征的同时改善了图像的对比度和清晰度,提高了脑肿瘤分割的准确性. 相似文献
5.
针对脑部核磁共振图像中含有噪音、对比度低及肿瘤边界不连续模糊等造成肿瘤难以准确分割的问题,提出了一种基于空频域图像增强的脑肿瘤分割算法.首先,采用空频域相结合的增强方法对图像进行增强处理.该方法利用基于邻域的方法,结合了空间域增强算法与基于方向滤波器组的频率域增强算法,具有它们优点的同时,克服了前者导致的图像细节模糊的缺陷及后者带来的对比度降低的缺陷.然后,利用液体向量流的分割方法,对增强后的图像进行分割,得到脑肿瘤区域.实验结果表明,本文的增强方法在增强肿瘤边界特征的同时改善了图像的对比度和清晰度,提高了脑肿瘤分割的准确性. 相似文献
6.
7.
针对模糊C均值聚类算法对初始值敏感、易陷入局部最优以及谱聚类算法无法处理样本量过大的问题,提出了一种将模糊C均值聚类算法与谱聚类算法相结合的模糊谱聚类算法应用于彩色图像分割。大致分为三步,第一步对图像进行预处理,将颜色空间由RGB空间转换为Lab空间;第二步对特征空间进行冗余模糊C均值聚类算法得到冗余类;第三步由冗余类的隶属度矩阵和聚类中心矩阵得到冗余类的特征空间,并根据贴进度和传递闭包将该特征空间转换为冗余类的相似度矩阵进行谱聚类,完成冗余类的合并。实验结果表明,与模糊C均值聚类算法相比,模糊谱聚类算法对于初始值敏感问题、易陷入局部最优以及只能识别团状的蔟得到了很好的解决,从而使彩色图像分割结果更加合理。 相似文献
8.
苹果的可见光谱目标的高效、精准识别是实现果园测产或机器自动采摘作业的关键,由于绿色目标果实与枝叶背景颜色较为相近,因此绿色苹果的识别成为新的挑战.再由于果园实际复杂环境因素影响,如光照、阴雨、枝叶遮挡、目标重叠等情况,现有的目标果实识别方案难以满足测产或自动采摘的实时、精准作业需求.为更好地实现果园自然环境中绿色目标果... 相似文献
9.
由于犯罪分子利用各种方法来避开传统的刑侦图像技术,因而红外图像逐渐成为获取犯罪现场痕迹的有效手段。然而,从犯罪现场拍摄的红外图像其目标痕迹大多是弱化的,所以在这类红外图像中分割目标是一项具有挑战性的任务。已有基于生物免疫的各类算法尚未明确描述免疫分割作用领域,以及免疫网络算法模型中的免疫识别距离。为实现对目标痕迹弱化红外图像的有效分割,提出了一种新的具有免疫作用领域和最小平均免疫识别距离的人工免疫构架,设计了一种具备最小平均距离免疫域的免疫分割算法。该方法根据红外图像的特点,采用多步分类算法、免疫变异和自适应免疫最小均距识别方法,根据目标区域和背景区域的总体统计特性实现最佳分类。实验结果表明,提出的基于最小平均距离的免疫算法能够有效地分割目标弱化的红外图像。与经典的边缘模板和区域模板方法相比,该算法具有更好的分割效果,尤其是针对目标弱化红外图像的分割,该算法能够较好地给出五个手指的边界轮廓。 相似文献
10.
11.
针对水肿区域边界模糊和瘤内结构复杂多变导致的脑胶质瘤分割不精确问题,本文提出了一种基于小波融合和3D-UNet网络的脑胶质瘤磁共振图像自动分割算法.首先,对脑胶质瘤磁共振图像的T1、T1ce、T2、Flair四种模态进行小波融合以及偏置场校正;然后,提取待分类的图像块;再利用提取的图像块训练3D-UNet网络以对图像块中的像素进行分类;最后加载损失率较小的网络模型进行分割,并采用基于连通区域的轮廓提取方法,以降低假阳性率.对57组Brats2018(Brain Tumor Segmentation 2018)磁共振图像测试集进行分割的结果显示,肿瘤的整体、核心和水肿部分的平均分割准确率(DSC)分别达到90.64%、80.74%和86.37%,这表明该算法分割脑胶质瘤准确率较高,与金标准相近.相比多模态图像融合前,该算法在减少输入网络数据量和图像冗余信息的同时,还一定程度上解决了胶质瘤边界模糊、分割不精确的问题,提高了分割的准确度和鲁棒性. 相似文献
12.
在乳腺动态增强磁共振(DCE-MR)图像中,乳房分割和腺体分割是进行乳腺癌风险评估的关键步骤.为实现在三维脂肪抑制乳腺DCE-MR图像中乳房和腺体的自动分割,本文提出一种基于nnU-Net的自动分割模型,利用U-Net分层学习图像特征的优势,融合深层特征与浅层特征,得到乳房分割和腺体分割结果.同时,基于nnU-Net策略,所使用的模型能根据图像参数自动进行预处理和数据扩增,并动态调整网络结构和参数配置.实验结果表明,在具有多样化参数的三维脂肪抑制乳腺DCE-MR图像数据集上,该模型能准确、有效地实现乳房和腺体分割,平均Dice相似系数分别达到0.969±0.007和0.893±0.054. 相似文献
13.
14.
15.
支持向量学习并行区域增长结合活动轮廓模型的图像分割算法 总被引:2,自引:0,他引:2
为克服经典区域增长算法门限设置困难和图像分割精度不高的问题,提出了基于支持向量机学习的区域增长与活动轮廓模型结合的高精度图像分割算法。首先交互式选择属于目标区域的子块和背景区域的子块形成支持向量机的训练样本;并利用这些已知的训练样本训练支持向量分类器。在目标与背景的并行竞争增长过程中,利用训练好的支持向量分类器(SVC)进行分类判决,得到目标对象的初始轮廓。为提高分割对象的精度,采用活动轮廓模型获得准确的边缘。仿真实验获得了较好的分割效果,表明该提出的算法是合理可行的。 相似文献
16.
在水下环境中,由于存在着水体对光线的吸收以及照明不均等原因,水下图像具有信噪比低、边缘模糊等特点。如果直接使用传统的分割方法,对水下图像进行处理后的效果较差。传统的基于最大熵原理的阈值法尽管能实现某些特定的分割任务,但是其时效性较差。而粒子群算法(PSO)是一类随机全局优化技术,该算法简单易实现,可调参数少。因此将群体智能中的粒子群优化算法应用到图像分割中。新方法在重新定义模糊熵的基础上,根据最大熵原理,利用粒子群算法来搜索分割阈值。相对于传统的利用穷举法来搜索分割阈值的算法,新方法大大减少了计算时间,提高了效率。通过对水下图像处理实验证明,该算法对简单背景的图像分割是有效的,和传统分割方法相比,具有更强的自适应性和抗噪性能。 相似文献
17.
18.
19.
CT图像中肺叶位置的确定对于肺部疾病的准确定位以及定性定量分析具有重要意义。为了提高肺叶自动分割准确率,提出了一种结合气管,血管等传统解剖学特征以及深度学习的肺叶分割算法。对原始图像进行预处理,获取肺实质、气管、血管以及基于深度学习网络的肺裂分割结果;整合来自多个解剖结构的信息生成分水岭分割所需成本图像;通过基于深度学习网络的肺叶粗分割结果,获取肺叶标记区域;执行基于标记的分水岭分割,实现肺叶的自动分割。选取了来自上海市肺科医院的20例含有肺部疾病患者的CT图像对该方法进行验证,最终的Jaccard相似性系数为92.4%。实验结果表明方法具有较高的肺叶分割精度,并且具有较强的鲁棒性。 相似文献