首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
甲醛(HCHO)是大气中含量最为丰富的羰基化合物,是非甲烷可挥发性有机化合物(NMVOCs)的最重要的中间产物之一,广泛参与大气中的光化学反应,同时也是气溶胶的重要前体物,在大气化学中承担了非常重要的作用。石油化工行业的VOCs类排放是城市大气中HCHO的重要来源,而目前化工园区中的HCHO等NMVOCs类污染物主要通过点式设备获取近地面浓度,缺乏立体监测数据。差分光学吸收光谱(DOAS)技术已成功应用于SO2和NO2等污染气体监测,甲醛由于其光学吸收强度相对较弱,反演波段内其他气体交叉干扰强,实际的监测应用相对较少。选取某石化企业,运用被动DOAS方法实现了甲醛柱浓度的精确反演。研究通过建立甲醛吸收截面与其他参与拟合气体吸收截面的二维相关性矩阵,选取甲醛吸收截面同其他气体吸收截面相关性最小的波段,即实现其他气体对甲醛的DOAS反演交叉干扰最小的波段的获取。同时选取外场实际采集的光谱,选择不同起始波段和截止波段做迭代DOAS反演,通过拟合残差来评估甲醛在不同波段的实际反演效果。在截面间交叉干扰小,拟合残差低的波段范围内,选择尽量宽的波段作为最佳的拟合波段,实现甲醛的精确DOAS反演。由甲醛同其他气体吸收截面的二维相关性矩阵结果,甲醛与NO2,SO2和O3和O4间在大部分波段内相关性均在0.5以下,交叉干扰小;甲醛同BrO在起始波长318~320 nm,截止波长340~346 nm以及起始波长330~334 nm,截止波长354~360 nm两个波段范围内截面间相关性小于0.5,适合作为HCHO的反演波段。通过选择不同起始波段和截止波段做甲醛的迭代DOAS反演,结合拟合截面相关性分析结果综合考虑,最终采用332.4~358.1 nm作为HCHO的反演波段,拟合残差在10-4量级。利用车载被动DOAS系统,通过建立吸收截面间二维相关性矩阵并通过实测光谱的迭代反演,获取了适用于该套系统的HCHO最佳拟合波段,拟合残差降低至10-4量级,在实现甲醛精确反演的基础上,结合系统GPS信息,获取了某化工企业甲醛柱浓度的空间分布,整个外场观测期间,HCHO的反演误差低于6%。结果表明,车载被动DOAS系统在快速获取化工园区甲醛空间分布信息上可以发挥重要作用,为城市大气中甲醛的立体监测提供了一种有效测量手段。  相似文献   

2.
差分吸收光谱中甲醛的反演研究   总被引:1,自引:0,他引:1  
由于甲醛(HCHO)在城市大气光化学反应中的重要性,测量大气环境中的甲醛已经成为全球的热点。针对目前国内检测甲醛的方法基本局限于化学法,文章详细介绍了采用差分吸收光谱(DOAS)技术反演得到大气环境中甲醛的方法,利用自制的差分吸收光谱系统测量了北京地区大气中的甲醛。文章分析了DOAS反演过程中反演甲醛光谱波段的选择及去除大气中SO2,NO2,O3的吸收以及氙灯灯谱结构对光谱反演中的交叉干扰影响;通过采用选择不同干扰气体所对应的最优波段,同时反演获得大气环境甲醛的浓度,避免了甲醛选择波段过窄,干扰气体去除不全的缺点;通过对误差来源的分析,得到该甲醛的反演方法总误差在13.7%内。  相似文献   

3.
大气水汽的吸收强度从微波区域到可见蓝光区域逐渐降低,然而在紫外波段的吸收却经常被人忽略。多轴差分吸收光谱(MAX-DOAS)技术是一种被动光学遥感技术,可以同时反演气溶胶、多种痕量气体(如NO2,SO2,HCHO,HONO等)以及水汽,常用于区域大气立体分布及输送监测,具有成本低、时间分辨率高、稳定、可实时监测等特点。水汽是一种重要的温室气体,在紫外波段反演一些痕量气体时水汽的吸收经常不被考虑,可能对紫外波段痕量气体的反演造成影响,从而产生系统误差。介绍了基于MAX-DOAS对紫外波段大气水汽的反演,于2020年6月1日—9月24日在西安乾县进行观测,通过选取最优反演波段,并将反演结果与可见蓝光波段的水汽进行对比,证实了紫外波段存在水汽吸收,评估了紫外水汽的吸收对同波段痕量气体反演的影响。首先,根据不同拟合波段反演的水汽均方根误差(RMS)以及水汽和O4的吸收截面情况,选取紫外和可见蓝光波段水汽的最优反演波段分别为351~370和434~455 nm。其次,通过DOAS拟合得到紫外和可见蓝光波段O4和H2O的对流层差分斜柱浓度(DSCD), 分别将紫外和可见波段的O4 DSCD和H2O DSCD做相关性分析,两个波段O4 DSCD的相关系数r=0.85,H2O DSCD的相关系数r=0.80。为消除不同波段的辐射传输差异,将同波段的H2O DSCD和O4DSCD作比值,两个波段H2O DSCD/O4DSCD的相关系数r=0.89。紫外和可见蓝光波段H2O DSCD/O4DSCD的高相关系数表明,即使在相对沿海城市水汽浓度较低的西安市,在363 nm附近的紫外波段同样存在水汽吸收,这将会对采用DOAS技术在紫外波段反演其他痕量气体造成影响。最后,分别对可能受紫外波段水汽吸收影响的气体(O4,HONO和HCHO)进行DOAS反演误差评估,紫外波段水汽的吸收将使O4 DSCD,HONO DSCD以及HCHO DSCD在DOAS拟合过程中增加,分别对应于+1.16%,+8.55%和+9.04%的变化。  相似文献   

4.
Qu XY  Li YJ 《光谱学与光谱分析》2010,30(11):2897-2901
差分吸收光谱技术(differential optical absorption spectroscopy,DOAS)利用气体分子在紫外-可见光谱范围的特征吸收来测量其浓度含量,现已被广泛应用于测量大气环境中痕量污染气体的浓度,如SO2,NO2,O3,HCHO等。测量得到的大气差分吸收谱在测量波段内(300~700nm)由于存有光源(氙灯或者氘灯)光谱结构,会影响大气环境中痕量气体浓度的准确反演;在光谱数据反演时,为了避开光源光谱结构的影响,国内外对其处理通常采用分段方式反演和弥补方式反演并介绍一种新的数据处理方法:采用平移窗口均值平滑方法(moving-window average smoothing method)获得大气光谱的慢变化,然后求取氙灯光谱结构。并将获得光源光谱结构对实际测量光谱进行拟合分析,取得了较好的效果,残差为2.995×10-4,避免了选择波段过窄和对新物质探测不利的缺点。  相似文献   

5.
介绍了一种基于差分光学吸收光谱技术对上海城市大气中HCHO和CHOCHO进行高时间分辨率的测定方法。针对HCHO和CHOCHO的不同吸收结构,选择适当的光谱分析波段,扣除干扰气体的吸收,有效降低残差,得到了用于反演目标气体的光学厚度,并进一步获得2013年10月HCHO与CHOCHO的浓度变化特征。HCHO,CHOCHO平均浓度分别为(4.0±1.6)和(3.4±1.2) μg·m-3。受人为源的影响,HCHO工作日平均浓度高于假期平均浓度,而CHOCHO的浓度相差不大。两者浓度的日变化趋势相似,早晨06:00—07:00出现最大值后迅速下降,到09:00左右出现最小值后又缓慢上升,并在夜间至日出前保持相对稳定的浓度水平。为探索大气HCHO可能的来源和生成过程,选取夜间稳态阶段,早高峰阶段,光化学反应阶段和晚高峰阶段等四个典型时段对HCHO的来源进行解析。NO2作为HCHO的一次源指示物;同时作为光化学反应的中间产物,HCHO和CHOCHO生成机理具有相似性,因此以CHOCHO作为解析HCHO的二次源指示物,利用线性回归模型来源解析结果所得HCHO浓度与实际观测值具有较好的相关性,相关系数r为0.60~0.81,分析得出上海城区二次来源对环境HCHO浓度的贡献约为三分之一。  相似文献   

6.
差分吸收光谱技术 (DOAS)由于高时间分辨率、高灵敏度和低操作费用等特点非常适合对大气中痕量的挥发性有机物 (VOCs)的光化学作用指示剂——O3,Ox(O3+NO2)和HCHO进行实时追踪。 但由于这些指示剂含量较低,测量精度易受干扰。 文章利用自行研制的差分吸收光谱系统,对VOCs的光化学作用指示剂测量方法和数据反演进行了研究,通过增加信噪比,扣除背景杂散光等手段对其进行了准确测量;针对标准吸收截面的温度效应、光谱固有结构和灯谱结构的干扰,改进了干扰的对除方法;并对不同波段反演O3,NO2和HCHO的干扰因素,反演浓度结果和反演准确度进行了分析与对比,以合适的波段准确反演物质浓度。  相似文献   

7.
臭氧(O3)浓度通常被认为是一个地方污染水平的基准,所以其绝对值的准确性至关藿要.在差分光学吸收光谱技术(DOAS)对O3的测量过程中,光谱反演波段的选择可直接决定O3浓度的测量准确度.文章主要研究了在不同光谱波段O3特征吸收结构和差分光学厚度(D')的不同,在不同光谱波段O3浓度反演的干扰来源以及影响程度,确定了实际检测时大气消光对不同波段光强的影响,最后通过对多种污染物标准气体进行了同时临测,计算出标准气体在不同光谱分辨率不同O3浓度时的测量误差,确定了对O3的最适用光谱波段范围.在此波段既能够实现对痕量气体的准确定性定量,又能达到测量所需要的高灵敏度,强选择性和适用的时间分辨率.  相似文献   

8.
差分光学吸收光谱法(DOAS)应用于固定污染源烟气排放监测时,烟气中污染气体SO2浓度较高将产生非线性吸收问题.提出了一种非线性补偿方法,即将实际浓度所对应的气体分压与反演结果所对应的气体分压之比与反演结果之间的对应关系拟合成补偿函数,利用此补偿函数对反演结果进行非线性补偿.实验结果表明:该补偿方法能较好地减低高浓度气体非线性吸收产生的影响,可提高气体浓度反演精度.  相似文献   

9.
甲醛(HCHO)在大气光化学反应中扮演着重要的角色,是一种重要的气溶胶前体物和光化学氧化指示剂。大气中HCHO的来源主要是直接排放和光化学反应生成。大气光化学反应与太阳辐射强度密切相关,一般来说,太阳辐射强度越强,大气光化学反应越剧烈,HCHO的二次来源产率也就越高。故针对HCHO的研究成为当今大气环境研究的一个重要课题。介绍了基于多轴差分吸收光谱技术 (MAX-DOAS) 获取对流层HCHO垂直柱浓度(VCD)及垂直廓线的反演算法。该方法是基于非线性最优估算法的两步反演方法,首先反演气溶胶垂直廓线, 然后在此基础上反演HCHO垂直廓线。其中第二步气体廓线反演时,气溶胶廓线线型会影响气体廓线反演的权重函数从而影响气体垂直廓线反演的精度, 为此, 研究了三种不同气溶胶廓线类型(指数型、高斯型和玻尔兹曼型)对HCHO垂直廓线反演的影响。结果表明,在三种气溶胶廓线类型条件下,当气溶胶光学厚度(AOD)为0.1时,气体反演的总误差、平均核的包络线、灵敏高度上限、自由度以及HCHO垂直廓线结果都比较接近,即气溶胶廓线类型对HCHO垂直廓线反演的影响很小。而对于200 m以下(含200 m)的近地面,通过指数型、高斯型和玻尔兹曼型气溶胶廓线获取的HCHO体积混合比(VMR)与真实HCHO VMR的差异分别为36.89%,-0.04%和23.30%, 表明使用指数型和玻尔兹曼型气溶胶廓线类型反演HCHO垂直廓线会高估近地面HCHO浓度,而高斯型气溶胶廓线类型则正好相反。此外,还反演了北京国科大站点一次污染过程中HCHO的垂直廓线,分析了污染过程中HCHO的垂直分布特征。结果表明,HCHO主要集中在1.0 km以下且一天中高值出现在午后,主要来自于本地产生,即西南风将污染的VOCs气团带到观测点,经过本地的光化学反应产生HCHO而积累,造成了此次HCHO浓度升高。结合气流后向轨迹分析,来自站点西南方向的输送是引起HCHO污染的重要原因。故观测站点的HCHO主要受污染输送和二次氧化的影响。最后对比了此次污染过程中不同气溶胶条件对HCHO廓线反演的误差影响。结果显示,气溶胶浓度高时,反演的灵敏高度和自由度下降,反演的高度分辨率下降,且反演总误差增加。  相似文献   

10.
针对被动多轴差分吸收光谱技术(MAX-DOAS)反演痕量气体SO_2中吸收强度弱以及易受反演波段和大气气溶胶状态影响的问题,研究了基于地基MAX-DOAS的对流层SO_2垂直廓线及垂直柱浓度的反演方法。通过反演误差对比确定了SO_2的最佳反演波段(307~330 nm),并精确获取了差分斜柱浓度。鉴于大气中气溶胶状态是影响SO_2等痕量气体反演的重要因素,反演中采用两步反演方法:第一步通过测量O_4气体的差分斜柱浓度来反演气溶胶廓线;第二步将气溶胶廓线输入到辐射传输模型中,利用痕量气体浓度垂直反演算法获取对流层(0~4 km)中SO_2的垂直分布廓线和垂直柱浓度。将SO_2廓线在0~100 m的反演结果和地面点式仪器数据进行对比,结果发现两者的一致性较高。研究表明,基于MAX-DOAS反演对流层中SO_2的垂直分布及垂直柱浓度是一种有效的手段。  相似文献   

11.
颗粒物Mie散射对差分吸收光谱技术的影响   总被引:1,自引:0,他引:1  
差分吸收光谱法(DOAS)应用于固定污染源烟气排放在线监测时,由于烟气中烟尘颗粒物含量较高,烟尘颗粒物Mie散射引起的消光对准确反演气体浓度应有一定影响,通过对1~10μm烟尘颗粒物Mie散射对DOAS影响的数值模拟和实验研究得出,烟尘颗粒物的散射光强与颗粒粒径分布、颗粒数密度有关,随着颗粒粒径和颗粒数密度增加,气体的差分吸收度随之而增加,差分吸收度曲线的频率特性发生变化,传统DOAS算法中的应用多项式滤波已无法消除颗粒物Mie散射对气体差分吸收度的影响,气体浓度的反演结果远远偏离真实值.  相似文献   

12.
多轴差分吸收光谱仪反演大气NO2的比对试验   总被引:1,自引:0,他引:1       下载免费PDF全文
为了满足卫星遥感产品地基验证平台中不同仪器观测数据一致性的要求, 2011年9月, 将3台不同设计方案、不同操作方式的多轴差分吸收光谱仪(MAX-DOAS) 集中在中国科学院大气物理研究所香河大气探测综合试验站, 进行了近20天的同步观测测试. 并对所有仪器统一观测方位角, 分别采用相同的紫外、可见光波段的特征吸收带及吸收截面进行NO2柱浓度的反演试验. 系统的比对分析表明: 3台MAX-DOAS的反演误差大都保持在6%以内, 说明仪器性能良好, 比较稳定; 紫外波段的反演结果略小于可见光波段, 尤其在阴天, 这是由于两波段对分子及气溶胶散射的敏感性不同造成的; 以可见光波段的反演结果为标准, 对紫外波段的反演结果进行系统订正, 订正后的各组数据一致性非常好, 满足卫星大气成分NO2柱浓度遥感产品不同地基验证站点数据稳定、一致的要求. 关键词: MAX-DOAS 2')" href="#">NO2 斜柱浓度 比对试验  相似文献   

13.
Wang MH  Xie PH  Qin M  Dou K  Wang J  Li A  Xu J  Shi P  Wu FC 《光谱学与光谱分析》2011,31(3):789-792
利用扫描长程DOAS(差分吸收光谱技术)系统结合气象高塔于2009年7月28日至8月13日开展了测量大气污染物廓线的外场,实验,对北京市大气中的SO2,NO2,O3,HCHO,HONO五种痕量气体进行实时监测,获得了 HCHO等污染物的浓度时间序列及垂直梯度时间序列.通过分析HCHO气体的垂直分布频率特征,并结合其他气...  相似文献   

14.
用光学差分吸收光谱监测大气中污染气体浓度   总被引:1,自引:0,他引:1  
在实验室内模拟测量了实际大气中污染气体的差分吸收光谱 (DOAS) .本文在介绍差分吸收光谱技术同时 ,分析计算了污染气体的浓度 .实验设计中被测气体为大气中的 2种主要污染气体 :工业锅炉的主要排放物SO2 和机动车尾气的主要成分NO .用氘灯作为光源测量其在紫外波段的特征吸收 ,并通过光纤束连接光栅光谱仪 ,由计算机自动采集和处理数据 .  相似文献   

15.
差分光学吸收光谱法(DOAS)应用于固定污染源烟气排放监测时,烟气中污染气体SO2浓度较高将产生非线性吸收问题。提出了一种非线性补偿方法,即将实际浓度所对应的气体分压与反演结果所对应的气体分压之比与反演结果之间的对应关系拟合成补偿函数,利用此补偿函数对反演结果进行非线性补偿。实验结果表明:该补偿方法能较好地减低高浓度气体非线性吸收产生的影响,可提高气体浓度反演精度。  相似文献   

16.
凌六一  谢品华  林攀攀  黄友锐  秦敏  段俊  胡仁志  吴丰成 《物理学报》2015,64(13):130705-130705
针对传统非相干宽带腔增强吸收光谱浓度反演方法的定量结果易受镜片反射率标定误差的影响问题, 提出了一种基于测量大气O2-O2吸收的浓度反演方法. 该方法是将非相干宽带腔增强吸收光谱技术的光学增强腔等效成吸收光程不随波长变化的多次反射池, 首先根据测得的宽带腔增强大气吸收谱和参考谱计算出光学厚度, 并应用差分光学吸收光谱算法拟合修正后的气体吸收截面到光学厚度, 反演得到大气中O2-O2以及被测气体的柱浓度, 然后根据O2-O2在大气中的含量已知且相对稳定这一特性, 确定出等效多次反射池的吸收光程, 最后从被测气体的柱浓度中扣除吸收光程信息得到被测气体的浓度值. 以监测大气中NO2实验为例, 应用该方法在454-487 nm波段反演得到了大气NO2的浓度(1-30 ppbv范围内), 并将反演结果与传统浓度反演方法的结果进行了对比, 发现两者的不一致性在7%以内. 实验结果表明, 非相干宽带腔增强吸收光谱技术可以利用大气O2-O2的吸收来定量其他被测气体的浓度, 而且定量结果对镜片反射率的标定误差不敏感.  相似文献   

17.
韩冬  陈良富  李莘莘  陶金花  苏林  邹铭敏  范萌 《物理学报》2013,62(10):109301-109301
利用被动差分吸收光谱算法反演水体上方尤其是海洋上方的大气痕量气体浓度时, 水体的振动拉曼散射导致对太阳光谱中夫琅禾费线的填充.若不考虑这种类似大气Ring效应的水Ring效应, 会直接影响反演精度. 参考OMI传感器对大气Ring效应校正的卷积算法, 针对痕量气体OClO的反演, 利用经过大气消光计算后的太阳 360–400 nm入射光谱和对应波段的水体后向振动拉曼散射系数,通过卷积差分计算,得到了差分水 Ring效应系数. 与Vasilkov模型计算得到的结果比较,二者的相关系数R 达到0.9665. 关键词: 水Ring效应 振动拉曼散射 卷积 被动差分吸收光谱算法  相似文献   

18.
CS_2气体是一种大气恶臭污染物,也是全封闭气体绝缘组合电器故障诊断的重要特征气体。但检测环境的温度变化直接影响监测数据的准确性。研究利用CS_2在紫外波段有明显的特征吸收特性,采用连续光源以及差分吸收光谱技术对不同浓度的CS_2气体,在不同温度环境下进行监测。CS_2气体浓度的反演采用最小二乘法,并对反演结果进行最小二乘法拟合得到温度补偿公式。实验结果显示CS_2气体差分吸收强度随温度的上升呈二次曲线式减小,导致浓度误差逐渐增大,在气体浓度较低时尤为明显。将温度补偿公式用于实际浓度的测量,实验浓度的误差由补偿前的最大17%降至5%以内。  相似文献   

19.
介绍了两台地基多轴DOAS仪器测量的NO2斜柱浓度的对比研究。利用日本海洋研究开发机构的一套多轴DOAS设备在2009年11月—12月31日期间16d的观测数据,与安光所自主研发的一套多轴DOAS设备测量的NO2差分斜柱浓度进行了对比。通过对比发现,采用自动调整积分时间的方法,与固定积分时间的设置相比仪器具有更高的信噪比;两套仪器的反演结果在小角度下具有比较好的一致性,相关系数高达0.995,但随着角度的增大相关性逐渐变差。在9点至16点时段内相对偏差较小,其中20°方向的结果最为接近,最小偏差仅有12%,但在9点前和16点后二者偏差增大。日方仪器在可见波段的反演结果明显好于紫外波段,反演中的剩余噪声减小了60%以上,同时在可见波段的差分斜柱浓度的计算结果与我们的多轴DOAS在紫外波段的计算结果在全天都具有非常好的一致性。  相似文献   

20.
在实际测量得到的气体吸收光谱中,发现大多数气体的吸收光谱具有明显的周期性,而傅里叶变换正是用来寻求信号的频率特征。在加窗的条件下,通过对不同气体的吸收光谱进行傅里叶变换,来寻求光谱信号对应的特征频率。在数据分析过程中,发现这样一个规律:在气体吸收光谱经傅里叶变换后的频谱图中,其对应特征频率的幅值与所测的气体浓度成明显的线性对应关系。因此,提出一种新的差分吸收光谱浓度解析方法,即利用气体吸收光谱傅里叶变换后其对应特征频率的幅值与浓度的关系,建立一种浓度反演计算的线性关系式,从而由气体吸收光谱傅里叶变换后特征频率的幅值直接求出气体的浓度。该方法完全摆脱了差分吸收光谱技术的理论基础,大大减少了光谱分析和气体浓度反演计算的过程,是一种值得进一步去探究的光谱分析方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号