首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Hyperpolarized technology utilizing dynamic nuclear polarization has enabled rapid and high-sensitivity measurements of 13C metabolism in vivo. The most commonly used in vivo agent for hyperpolarized 13C metabolic imaging thus far has been [1-13C]pyruvate. In preclinical studies, not only is its uptake detected, but also its intracellular enzymatic conversion to metabolic products including [1-13C]lactate and [1-13C]alanine. However, the ratio of 13C-lactate/13C-pyruvate measured in this data does not accurately reflect cellular values since much of the [1-13C]pyruvate is extracellular depending on timing, vascular properties, and extracellular space and monocarboxylate transporter activity. In order to measure the relative levels of intracellular pyruvate and lactate, in this project we hyperpolarized [1-13C]alanine and monitored the in vivo conversion to [1-13C]pyruvate and then the subsequent conversion to [1-13C]lactate. The intracellular lactate-to-pyruvate ratio of normal rat tissue measured with hyperpolarized [1-13C]alanine was 4.89±0.61 (mean±S.E.) as opposed to a ratio of 0.41±0.03 when hyperpolarized [1-13C]pyruvate was injected.  相似文献   

2.
A new method was developed for simultaneous spatial localization and spectral separation of multiple compounds based on a single echo, by designing the acquisition to place individual compounds in separate frequency encoding bands. This method was specially designed for rapid and robust metabolic imaging of hyperpolarized (13)C substrates and their metabolic products, and was investigated in phantom studies and studies in normal mice and transgenic models of prostate cancer to provide rapid metabolic imaging of hyperpolarized [1-(13)C]pyruvate and its metabolic products [1-(13)C]lactate and [1-(13)C]alanine at spatial resolutions up to 3mm in-plane. Elevated pyruvate and lactate signals in the vicinity of prostatic tissues were observed in transgenic tumor mice. The multi-band frequency encoding technique enabled rapid metabolic imaging of hyperpolarized (13)C compounds with important advantages over prior approaches, including less complicated acquisition and reconstruction methods.  相似文献   

3.
Hyperpolarized 13C offers high signal-to-noise ratios for imaging metabolic activity in vivo, but care must be taken when designing pulse sequences because the magnetization cannot be recovered once it has decayed. It has a short lifetime, on the order of minutes, and gets used up by each RF excitation. In this paper, we present a new dynamic chemical-shift imaging method that uses specialized RF pulses designed to maintain most of the hyperpolarized substrate while providing adequate SNR for the metabolic products. These are multiband, variable flip angle, spectral-spatial RF pulses that use spectral selectivity to minimally excite the injected prepolarized 13C-pyruvate substrate. The metabolic products of lactate and alanine are excited with a larger flip angle to increase SNR. This excitation was followed by an RF amplitude insensitive double spin-echo and an echo-planar flyback spectral-spatial readout gradient. In vivo results in rats and mice are presented showing improvements over constant flip angle RF pulses. The metabolic products are observable for a longer window because the low pyruvate flip angle preserves magnetization, allowing for improved observation of spatially varying metabolic reactions.  相似文献   

4.
PurposeThe goal of this study was to develop a methodology to investigate the relationship between contractile function and hyperpolarized (HP) [1-13C]pyruvate metabolism in a small animal model. To achieve sufficient signal from HP 13C compounds, HP 13C MRS/MRSI has required relatively large infusion volumes relative to the total blood volume in small animal models, which may affect cardiac function.MethodsEight female Sprague Dawley rats were imaged on a 4.7T scanner with a dual tuned 1H/13C volume coil. ECG and respiratory gated k-t spiral MRSI and an IDEAL based reconstruction to determine [1-13C]pyruvate metabolism in the myocardium. This was coupled with 1H cine MRI to determine ventricular volumes and mechanical function pre- and post-infusion of [1-13C]pyruvate. For comparison to the [1-13C]pyruvate experiments, three female Sprague Dawley rats were imaged with 1H cine MRI to determine myocardial function pre- and post-saline infusion.ResultsWe demonstrated significant changes in cardiac contractile function between pre- and post-infusion of [1-13C]pyruvate. Specifically, there was an increase in end-diastolic volume (EDV), stroke volume (SV), and ejection fraction (EF). Additionally, the ventricular vascular coupling ratio (VVCR) showed an improvement after [1-13C]pyruvate infusion, indicating increased systolic performance due to an increased arterial load. There was a moderate to strong relationship between the downstream metabolic conversion of pyruvate to bicarbonate and a strong relationship between the conversion of pyruvate to lactate and the cardiac mechanical function response.ConclusionThe infusion of [1-13C]pyruvate resulted in demonstrable increases in contractile function which was related to pyruvate conversion to bicarbonate and lactate. The combined effects of the infusion volume and inotropic effects of pyruvate metabolism likely explains the augmentation in myocardial mechanical function seen in these experiments. Given the relationship between pyruvate metabolism and contractile function observed in this study, this methodological approach may be utilized to better understand cardiac metabolic and functional remodeling in heart disease.  相似文献   

5.
Development of hyperpolarized technology utilizing dynamic nuclear polarization has enabled the measurement of 13C metabolism in vivo at very high signal-to-noise ratio (SNR). In vivo mitochondrial metabolism can, in principle, be monitored with pyruvate, which is catalyzed to acetyl-CoA via pyruvate dehydrogenase (PDH). The purpose of this work was to determine whether the compound sodium dichloroacetate (DCA) could aid the study of mitochondrial metabolism with hyperpolarized pyruvate. DCA stimulates PDH by inhibiting its inhibitor, pyruvate dehydrogenase kinase. In this work, hyperpolarized [1-13C]pyruvate and [2-13C]pyruvate were used to probe mitochondrial metabolism in normal rats. Increased conversion to bicarbonate (+ 181±69%, P=.025) was measured when [1-13C]pyruvate was injected after DCA administration, and increased glutamate (+ 74±23%, P=.004), acetoacetate (+ 504±281%, P=.009) and acetylcarnitine (+ 377±157%, P=.003) were detected when [2-13C]pyruvate was used.  相似文献   

6.
This study investigated the application of an acquisition that selectively excites the [1-13C]lactate resonance and allows dynamic tracking of the conversion of 13C-lactate from hyperpolarized 13C-pyruvate at a high spatial resolution. In order to characterize metabolic processes occurring in a mouse model of prostate cancer, 20 sequential 3D images of 13C-lactate were acquired 5 s apart using a pulse sequence that incorporated a spectral–spatial excitation pulse and a flyback echo-planar readout to track the time course of newly converted 13C-lactate after injection of prepolarized 13C-pyruvate. The maximum lactate signal (MLS), full-width half-maximum (FWHM), time to the peak 13C-lactate signal (TTP) and area under the dynamic curve were calculated from the dynamic images of 10 TRAMP mice and two wild-type controls. The regional variation in 13C-lactate associated with the injected pyruvate was demonstrated by the peak of the 13C-lactate signal occurring earlier in the kidney than in the tumor region. The intensity of the dynamic 13C-lactate curves also varied spatially within the tumor, illustrating the heterogeneity in metabolism that was most prominent in more advanced stages of disease development. The MLS was significantly higher in TRAMP mice that had advanced disease.  相似文献   

7.
The metabolically inactive hyperpolarized agents HP001 (bis-1,1-(hydroxymethyl)-[1-(13)C]cyclopropane-d(8)) and urea enable a new type of perfusion magnetic resonance imaging based on a direct signal source that is background-free. The addition of perfusion information to metabolic information obtained by spectroscopic imaging of hyperpolarized [1-(13)C]pyruvate would be of great value in exploring the relationship between perfusion and metabolism in cancer. In preclinical normal murine and cancer model studies, we performed both dynamic multislice imaging of the specialized hyperpolarized perfusion compound HP001 (T(1)=95 s ex vivo, 32 s in vivo at 3 T) using a pulse sequence with balanced steady-state free precession and ramped flip angle over time for efficient utilization of the hyperpolarized magnetization and three-dimensional echo-planar spectroscopic imaging of urea copolarized with [1-(13)C]pyruvate, with compressed sensing for resolution enhancement. For the dynamic data, peak signal maps and blood flow maps derived from perfusion modeling were generated. The spatial heterogeneity of perfusion was increased 2.9-fold in tumor tissues (P=.05), and slower washout was observed in the dynamic data. The results of separate dynamic HP001 imaging and copolarized pyruvate/urea imaging were compared. A strong and significant correlation (R=0.73, P=.02) detected between the urea and HP001 data confirmed the value of copolarizing urea with pyruvate for simultaneous assessment of perfusion and metabolism.  相似文献   

8.
Metabolic imaging with hyperpolarized [1-13C]-pyruvate can rapidly probe tissue metabolic profiles in vivo and has been shown to provide cancer imaging biomarkers for tumor detection, progression, and response to therapy. This technique uses a bolus injection followed by imaging within 1–2 minutes. The observed metabolites include vascular components and their generation is also influenced by cellular transport. These factors complicate image interpretation, especially since [1-13C]lactate, a metabolic product that is a biomarker of cancer, is also produced by red blood cells. It would be valuable to understand the distribution of metabolites between the vasculature, interstitial space, and intracellular compartments. The purpose of this study was to better understand this compartmentalization by using a perfusion and diffusion-sensitive stimulated-echo acquisition mode (STEAM) MRSI acquisition method tailored to hyperpolarized substrates. Our results in mouse models showed that among metabolites, the injected substrate 13C-pyruvate had the largest vascular fraction overall while 13C-alanine had the smallest vascular fraction. We observed a larger vascular fraction of pyruvate and lactate in the kidneys and liver when compared to back muscle and prostate tumor tissue. Our data suggests that 13C-lactate in prostate tumor tissue voxels was the most abundant labeled metabolite intracellularly. This was shown in STEAM images that highlighted abnormal cancer cell metabolism and suppressed vascular 13C metabolite signals.  相似文献   

9.
The purpose of this work was to study the anatomic and metabolic changes that occur with tumor progression, regression and recurrence in a switchable MYC-driven murine breast cancer model. Serial 1H MRI and hyperpolarized [1-13C]pyruvate metabolic imaging were used to investigate the changes in tumor volume and glycolytic metabolism over time during the multistage tumorigenesis. We show that acute de-induction of MYC expression in established tumors results in rapid tumor regression and significantly reduced glycolytic metabolism as measured by pyruvate-to-lactate conversion. Moreover, cancer recurrences occurring at the tumor sites independently of MYC expression were observed to accompany markedly increased lactate production.  相似文献   

10.
Metabolic imaging of hyperpolarized [1-13C] pyruvate co-polarized with [13C]urea by dynamic nuclear polarization with rapid dissolution is a promising new method for assessing tumor metabolism and perfusion simultaneously in vivo. Novel pulse sequences are required to enable dynamic imaging of multiple 13C spectral lines with high spatiotemporal resolution. The goal of this study was to investigate a new frequency-specific approach for rapid metabolic imaging of multiple 13C resonances using the spectral selectivity of steady-state free precession pulse (SSFP) trains. Methods developed in simulations were implemented in a dynamic frequency-cycled balanced SSFP pulse sequence on a 14.1-T animal magnetic resonance imaging scanner. This acquisition was tested in thermal and hyperpolarized phantom imaging studies and in a transgenic mouse with prostate cancer.  相似文献   

11.
Cardiac metabolism assessment with hyperpolarized 13C magnetic resonance spectroscopy in pig models requires the design of dedicated coils capable of providing large field of view with high signal-to-noise ratio (SNR) data. This work presents a comparison between a commercial 13C quadrature birdcage coil and a homebuilt 13C circular coil both designed for hyperpolarized studies of pig heart with a clinical 3T scanner. In particular, the simulation of the two coils is described by developing an SNR model for coil performance prediction and comparison. While coil resistances were calculated from Ohm’s law, the magnetic field patterns and sample-induced resistances were calculated using a numerical finite-difference time-domain algorithm. After the numerical simulation of both coils, the results are presented as SNR-versus-depth profiles using experimental SNR extracted from the [1-13C]acetate phantom chemical shift image and with a comparison of metabolic maps acquired by hyperpolarized [1-13C]pyruvate injected in a pig. The accuracy of the developed SNR models was demonstrated by good agreement between the theoretical and experimental coil SNR-versus-depth profiles.  相似文献   

12.
We describe a novel (13)C enriched precursor molecule, sodium 1-(13)C acetylenedicarboxylate, which after hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized (13)C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized (13)C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized (13)C sodium succinate, contained significant concentrations of the injected substrate, (13)C sodium succinate, together with (13)C maleate and succinate metabolites 1-(13)C-glutamate, 5-(13)C-glutamate, 1-(13)C-glutamine and 5-(13)C-glutamine. The (13)C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood-brain barrier. These ex vivo results indicate that hyperpolarized (13)C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in (13)C MR spectral-spatial images.  相似文献   

13.
The goal of this project was to develop and apply techniques for T2 mapping and 3D high resolution (1.5 mm isotropic; 0.003 cm3) 13C imaging of hyperpolarized (HP) probes [1-13C]lactate, [1-13C]pyruvate, [2-13C]pyruvate, and [13C,15N2]urea in vivo. A specialized 2D bSSFP sequence was implemented on a clinical 3T scanner and used to obtain the first high resolution T2 maps of these different hyperpolarized compounds in both rats and tumor-bearing mice. These maps were first used to optimize timings for highest SNR for single time-point 3D bSSFP acquisitions with a 1.5 mm isotropic spatial resolution of normal rats. This 3D acquisition approach was extended to serial dynamic imaging with 2-fold compressed sensing acceleration without changing spatial resolution. The T2 mapping experiments yielded measurements of T2 values of > 1 s for all compounds within rat kidneys/vasculature and TRAMP tumors, except for [2-13C]pyruvate which was ~ 730 ms and ~ 320 ms, respectively. The high resolution 3D imaging enabled visualization the biodistribution of [1-13C]lactate, [1-13C]pyruvate, and [2-13C]pyruvate within different kidney compartments as well as in the vasculature. While the mouse anatomy is smaller, the resolution was also sufficient to image the distribution of all compounds within kidney, vasculature, and tumor. The development of the specialized 3D sequence with compressed sensing provided improved structural and functional assessments at a high (0.003 cm3) spatial and 2 s temporal resolution in vivo utilizing HP 13C substrates by exploiting their long T2 values. This 1.5 mm isotropic resolution is comparable to 1H imaging and application of this approach could be extended to future studies of uptake, metabolism, and perfusion in cancer and other disease models and may ultimately be of value for clinical imaging.  相似文献   

14.
The development of hyperpolarized technology utilizing dynamic nuclear polarization (DNP) has enabled the rapid measurement of 13C metabolism in vivo with very high SNR. However, with traditional DNP equipment, consecutive injections of a hyperpolarized compound in an animal have been subject to a practical minimum time between injections governed by the polarization build-up time, which is on the order of an hour for [1-13C]pyruvate. This has precluded the monitoring of metabolic changes occurring on a faster time scale. In this study, we demonstrated the ability to acquire in vivo dynamic magnetic resonance spectroscopy (MRS) and 3D magnetic resonance spectroscopic imaging (MRSI) data in normal rats with a 5 min interval between injections of hyperpolarized [1-13C]pyruvate using a prototype, sub-Kelvin dynamic nuclear polarizer with the capability to simultaneously polarize up to 4 samples and dissolve them in rapid succession. There were minimal perturbations in the hyperpolarized spectra as a result of the multiple injections, suggesting that such an approach would not confound the investigation of metabolism occurring on this time scale. As an initial demonstration of the application of this technology and approach for monitoring rapid changes in metabolism as a result of a physiological intervention, we investigated the pharmacodynamics of the anti-cancer agent dichloroacetate (DCA), collecting hyperpolarized data before administration of DCA, 1 min after administration, and 6 min after administration. Dramatic increases in 13C-bicarbonate were detected just 1 min (as well as 6 min) after DCA administration.  相似文献   

15.
High polarization of nuclear spins in liquid state through dynamic nuclear polarization has enabled the direct monitoring of 13C metabolites in vivo at very high signal-to-noise, allowing for rapid assessment of tissue metabolism. The abundant SNR afforded by this hyperpolarization technique makes high-resolution 13C 3D-MRSI feasible. However, the number of phase encodes that can be fit into the short acquisition time for hyperpolarized imaging limits spatial coverage and resolution. To take advantage of the high SNR available from hyperpolarization, we have applied compressed sensing to achieve a factor of 2 enhancement in spatial resolution without increasing acquisition time or decreasing coverage. In this paper, the design and testing of compressed sensing suited for a flyback 13C 3D-MRSI sequence are presented. The key to this design was the undersampling of spectral k-space using a novel blipped scheme, thus taking advantage of the considerable sparsity in typical hyperpolarized 13C spectra. Phantom tests validated the accuracy of the compressed sensing approach and initial mouse experiments demonstrated in vivo feasibility.  相似文献   

16.
[1-13C] pyruvate pre-polarized via DNP has been used in animal models to probe changes in metabolic enzyme activities in vivo. To more accurately assess the metabolic state and its change from disease progression or therapy in a specific region or tissue in vivo, it may be desirable to separate the downstream 13C metabolite signals resulting from the metabolic activity within the tissue of interest and those brought into the tissue by perfusion. In this study, a spectral-spatial saturation pulse that selectively saturates the signal from the metabolic products [1-13C] lactate and [1-13C] alanine was designed and implemented as outer volume suppression for localized MRSI acquisition. Preliminary in vivo results showed that the suppression pulse did not prevent the pre-polarized pyruvate from being delivered throughout the animal while it saturated the metabolites within the targeted saturation region.  相似文献   

17.
Hyperpolarized 13C magnetic resonance spectroscopy in pig models enables metabolic activity mapping, providing a powerful tool for the study of the heart physiology, but requires the development of dedicated radiofrequency coils, capable of providing large field of view with high signal-to-noise ratio (SNR) data. This work describes the simulations and the tests of a transmit-only (TX) volume coil/receive-only (RX) surface coil both designed for hyperpolarized studies of pig heart with a clinical 3T scanner. The coil characterization is performed by developing an SNR model for coil performance in terms of coil resistance, sample-induced resistance and magnetic field pattern. In particular, coil resistances were calculated from Ohm’s law, while magnetic field patterns and sample-induced resistances were calculated using a numerical finite-difference time-domain algorithm. Experimental phantom chemical shift image, showed good agreement with the theoretical SNR-vs-depth profiles and highlighted the advantage of the novel configuration over the single transmit–receive coils throughout the volume of interest for cardiac imaging in pig. Finally, the TX-birdcage/RX-circular configuration was tested by acquiring metabolic maps with hyperpolarized [1-13C] pyruvate injected i.v. in a pig. The results of the phantom and pig experiments show the ability of the coil configuration to image well the metabolites distribution.  相似文献   

18.
We report metabolic images of (13)C, following injection of a bolus of hyperpolarized [1-(13)C] pyruvate in a live rat. The data were acquired on a clinical scanner, using custom coils for volume transmission and array reception. Proton blocking of all carbon resonators enabled proton anatomic imaging with the system body coil, to allow for registration of anatomic and metabolic images, for which good correlation was achieved, with some anatomic features (kidney and heart) clearly visible in a carbon image, without reference to the corresponding proton image. Parallel imaging with sensitivity encoding was used to increase the spatial resolution in the SI direction of the rat. The signal to noise ratio in was in some instances unexpectedly high in the parallel images; variability of the polarization among different trials, plus partial volume effects, are noted as a possible cause of this.  相似文献   

19.
The aim of this study was to compare the diffusion characteristic of lactate and alanine in a brain tumor model to that of normal brain metabolites known to be mainly intracellular such as N-acetylaspartate or creatine. The diffusion of (13)C-labeled metabolites was measured in vivo with localized NMR spectroscopy at 9.4 T (400 MHz) using a previously described localization and editing pulse sequence known as ACED-STEAM ('adiabatic carbon editing and decoupling'). (13)C-labeled glucose was administered and the apparent diffusion coefficients of the glycolytic products, {(1)H-(13)C}-lactate and {(1)H-(13)C}-alanine, were determined in rat intracerebral 9L glioma. To obtain insights into {(1)H-(13)C}-lactate compartmentation (intra- versus extracellular), the pulse sequence used very large diffusion weighting (50 ms/microm(2)). Multi-exponential diffusion attenuation of the lactate metabolite signals was observed. The persistence of a lactate signal at very large diffusion weighting provided direct experimental evidence of significant intracellular lactate concentration. To investigate the spatial distribution of lactate and other metabolites, (1)H spectroscopic images were also acquired. Lactate and choline-containing compounds were consistently elevated in tumor tissue, but not in necrotic regions and surrounding normal-appearing brain. Overall, these findings suggest that lactate is mainly associated with tumor tissue and that within the time-frame of these experiments at least some of the glycolytic product ([(13)C] lactate) originates from an intracellular compartment.  相似文献   

20.
(13)C MRS studies at natural abundance and after intravenous 1-(13)C glucose infusion were performed on a 1.5-T clinical scanner in four subjects. Localization to the occipital cortex was achieved by a surface coil. In natural abundance spectra glucose C(3beta,5beta), myo-inositol, glutamate C(1,2,5), glutamine C(1,2,5), N-acetyl-aspartate C(1-4,C=O), creatine CH(2), CH(3), and C(C=N), taurine C(2,3), bicarbonate HCO(-)(3) were identified. After glucose infusion (13)C enrichment of glucose C(1alpha,1beta), glutamate C(1-4), glutamine C(1-4), aspartate C(2,3), N-acetyl-aspartate C(2,3), lactate C(3), alanine C(3), and HCO(-)(3) were observed. The observation of (13)C enrichment of resonances resonating at >150 ppm is an extension of previously published studies and will provide a more precise determination of metabolic rates and substrate decarboxylation in human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号