首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Four known isoflavone glucosides have been isolated from the bark of Amorpha fruticosa, which is a traditional remedy plant, for the first time. They were elucidated as 3′-hydroxy-4′-methoxyisoflavone-7-O-β-D-glucopyranoside (1), 4′,6-dimethoxyisoflavone-7-O-β-D-glucopyranoside (2), 4′-methoxyisoflavone-7-O-β-D-glucopyranoside (3), and 3′,5-dihydroxy-4′-methoxyisoflavone-7-O-β-D-glucopyranoside (4), based on the UV, FT-IR, EIMS, FABMS, HREIMS, and NMR (1H and 13C, DEPT, COSY, NOESY, HMQC, and HMBC) data. Published in Khimiya Prirodnykh Soedinenii, No. 4, pp. 336–338, July–August, 2006.  相似文献   

2.
Ellagic acid derivatives were isolated from Dipentodon sinicus and their structures were identified as 3,3′,4′-tri-O-methylellagic acid (1), 3,3′-di-O-methylellagic acid (2), 4,4′-di-O-methylellagic acid (3), 3,3′-di-O-methylellagic acid-4′-O-α-L-rhamnopyranoside (4), 3,3′,4′-tri-O-methylellagic acid-4′-O-β-D-glucopyranoside (5), 3,3′-di-O-methylellagic acid-4′-O-β-D-glucopyranoside (6), and ellagic acid (7). All the compounds were isolated for the first time from the title plant. Published in Khimiya Prirodnykh Soedinenii, No. 2, pp. 106–107, March–April, 2007.  相似文献   

3.
A novel compound, 4-{1′-hydroxy-1′-mercapto-1′-[1′′-2′′(N→O)-isoquinolyl]}yl-1-benzoic acid (1), together with six known compounds, 6-hydroxykaempferol-3-O-β-D-glucopyranoside (2), rutin (3), quercetin-3-O-β-D-glucopyranoside (4), kaempferol-3-O-β-D-glucopyranoside (5), cartormin (6), hydroxysafflor yellow A (7), were isolated by chromatography from the n-BuOH fraction of 50% ethanol extraction of Flos carthami. Their structures were elucidated on the basis of spectral analysis and comparison with published data. Among them, compound 1 was shown to possess a weak protective effect against cerebral ischemic damage in rats. Published in Khimiya Prirodnykh Soedinenii, No. 3, pp. 339–341, May–June, 2009.  相似文献   

4.
Five ellagic acid glycosides were isolated from Aphananthe aspera and their structures were identified as 3-O-methylellagic acid-4′-O-α-L-rhamnopyranoside (1), 3-O-methylellagic acid-4′-O-β-D-xylopyranoside (2), 3,3′-di-O-methylellagic acid-4′-O-β-D-xylopyranoside (3), 3,3′, 4-tri-O-methylellagic acid-4′-O-β-D-glucopyranoside (4), and 3,3′-di-O-methylellagic acid-4′-O-α-L-rhamnopyranoside (5) on the basis of spectroscopic analysis. Compound 1 is new, and all the compounds were isolated for the first time from the title plant. Published in Khimiya Prirodnykh Soedinenii, No. 5, pp. 458–459, September–October, 2007.  相似文献   

5.
Three new compounds, 4-hydroxymethylene-7-(9,9,13-trimethylcyclohexyl)-heptanyl-3′,7′,7′-trimethylcyclohexa-2′,4′-dien-1′-oate (1), 1-(n-hexadec-7-enoxy)-6-(n-octadecanoxy)-β-D-glucopyranoside (2), and (Z)-12-hydroxy-9-octadecenoic acid-12-β-D-glucopyranoside (3), along with the known compound hexacosanoic acid (4), were isolated and identified from the rice hulls of Oryza sativa. Their structures were elucidated by 1D and 2D NMR spectroscopic techniques (1H-1H COSY, 1H-13C HETCOR, DEPT) aided by EIMS, FABMS, HRFABMS, and IR spectra. Published in Khimiya Prirodnykh Soedinenii, No. 4, pp. 344–347, July–August, 2007.  相似文献   

6.
A new stilbene glycoside, 5-methylresveratrol-3,4′-O-β-D-diglucopyranoside (1), was isolated from the n-butanol fraction of the rhizomes of Veratrum dahuricum, together with five known stilbenoids: resveratrol-3-O-β-D-glycoside (2), 4′-methylresveratrol-3-O-β-D-glycoside (3), oxyresveratrol-4′-O-β-D-glycoside (4), oxyresveratrol-3-O-β-D-glycoside (5), and oxyresveratrol-3,4′-O-β-D-diglycoside (6), and found for the first time in the investigated plant. The structures of six isolates were identified on the basis of 1D and 2D NMR data. Compounds 1–6 showed platelet aggregation inhibition, and compound 1 had an IC50 value of 383.6 μM against platelet aggregation induced by AA. Published in Khimiya Prirodnykh Soedinenii, No. 3, pp. 279–282, May–June, 2009.  相似文献   

7.
A new flavone glycoside, luteolin 7-O-[(6″′-caffeoyl)-β-D-glucopyranosyl-(1 → 6)]-β-D-glucopyranoside (1), was isolated from Codonopsis nervosa, along with three other known compounds, luteolin 7-O-β-D-glucopyranoside (2), luteolin 7-O-gentiobioside (3), and tangshenoside VI (4). Their structures were determined on the basis of 1D and 2D NMR, IR, and HR-ESI-MS.  相似文献   

8.
A new flavone diglucoside named 7,3′-dihydroxy-4′-methoxyflavone-5-O-β-D-glucopyranosyl (6″ → 1‴)-β-D-glucopyranoside (1), along with four known flavonoids, luteolin (2), isoquercetin (3), catechin (4), and diosmetin (5), has been isolated and characterized from Salix denticulata. The structure of the new flavone diglucoside was characterized by means of high field 1D and 2D NMR and MS spectral analysis.  相似文献   

9.
A new phenolic glycoside was isolated from the stems of Acanthopanax senticosus together with sixteen known compounds. The structure of the new compound was determined to be 2,6-dimethoxy-4-[(1E)-3,3-dimethoxy-1-propenyl]phenyl β-D-glucopyranoside (1) by means of physical, chemical, and spectroscopic methods. Of the known compounds, salvadoraside (7), (7R,8S)-dihydrodehydrodiconiferyl alcohol 4,9′-di-O-β-D-glucopyranoside (8), 3-(4-O-β-D-glucopyranosylferuloyl)quinic acid (15), rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (16), and lycoperodine-l (17) were first reported from the title plant. The inhibitory activities of the isolated compounds against α-glucosidase from rat intestine were also reported.  相似文献   

10.
Two new steroidal glycosides (1 and 2) have been isolated from the ethanolic extract of the stem bark of Mimusops elengi L. and characterized as stigmasta-5,22-dien-3β-ol-3β-D-glucuropyranosyl-(6′β→1″)-D-glucopyranoside (1) and β-sitosterol-3β-(3″′,6″′,7″′-trihydroxynaphthyl-2″′-carboxyl)-4″-glucopyranosyl-(1″→4′)-glucopyranoside (2) along with the known compounds stigmasta-5-en-3β-ol, lup-20(29)-en-3β-ol, and stigmasta-5-en-3β-D-glucopyranoside. Their structures have been elucidated on the basis of spectral data analysis and chemical reactions.  相似文献   

11.
A method for preparative production of 3β,20S-dihydroxydammar-24-en-12-one 3,20-di-O-β-D-glucopyranoside (1), a glycoside from Panax japonicus, chikusetsusaponin-LT8 was developed. Chemical transformation of betulafolientriol, a component of Betula leaves extract, produced the 12-keto-20S-protopanaxadiol (3β,20S-dihydroxydammar-24-en-12-one) (2), exhaustive glycosylation of which by 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosylbromide (3) under Koenigs—Knorr reaction conditions with subsequent removal of protecting groups formed 3β,20S-dihydroxydammar-24-en-12-one 3,20-di-O-β-D-glucopyranoside (1). The principal glycosylation product was 3β,20S-dihydroxydammar-24-en-12-one 3-O-β-D-glucopyranoside if equimolar amounts of (2) and (3) were used. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 44–48, January–February, 2006.  相似文献   

12.
A new flavonol glycoside and four known flavonol glycosides were isolated from the whole plant of Pseudodrynaria coronans. By means of spectroscopic analysis, their structures were established as kaempferol3-O-(6' -O-feruloyl-4' -O-acetyl)-β-D-glucopyranoside (1), kaempferol-3-O-(6' -O-feruloyl)-β-Dglucopyranoside (2), kaempferol-3-O-(6' -O-acetyl)-β-D-glucopyranoside (3), astragalin (4), and isoquercitrin (5). The DPPH radical scavenging activities of these compounds were also assayed.  相似文献   

13.
Two new thiazinediones along with five known compounds were isolated from the fruits of Xanthium strumarium L. The structures of the two new compounds were determined to be 7-hydroxymethyl-8,8-dimethyl-4,8-dihydrobenzol[1,4]thiazine-3,5-dione-11-O-β-D-glucopyranoside (1) and 2-hydroxy-7-hydroxymethyl-8,8-dimethyl-4,8-dihydrobenzol[1,4]thiazine-3,5-dione-11-O-β-D-glucopyranoside (2). The five known compounds were identified as xanthiazone (3), chlorogenic acid (4), ferulic acid (5), formononetin (6), and ononin (7), respectively. Published in Khimiya Prirodnykh Soedinenii, No. 5, pp. 456–458, September–October, 2006.  相似文献   

14.
A new bicyclo[3.2.1]octanoid neolignan rel-(7S,8R,1′S,2′R,3′S)-Δ8′-2′-hydroxy-5,1′,3′-trimethoxy-3,4methylenedioxy-7,3′,8,1′-neolignan (1) was isolated from ethanol extract from the fruit of Ocotea heterochroma Mez & Sodiro ex Mez as well as the known compounds β-friedelanol (2), meso-dehydroguaiaretic acid (3), and yangambin (4), whose structures were elucidated on the basis of their comprehensive spectroscopic analysis including 2D NMR data. Lethality bioassay using brine shrimp (Artemia salina Leach) was evaluated with the ethanol extract from the Ocotea heterochroma’s fruit. The toxicity of this extract was greater than the toxicity of those fractions obtained in a first solvent partition (benzene, ethyl acetate, and butanol subfractions) and that of a mixture of acetylated 2′-epimers from the new neolignan 1. Published in Khimiya Prirodnykh Soedinenii, No. 2, pp. 158–160, March–April, 2009.  相似文献   

15.
Two new myricetin glycosides, myricetin-3-O-(6″-O-E-p-coumaroyl)-α-D-glucocopyranoside (1) and 3′,5′-di-O-methylmyricetin-3-O-(6″-O-acetyl)-α-D-glucopyranoside (2), and three known flavonoids, myricetin (3), cedrin (4), and 2R,3R-dihydromyricetin (5), were isolated from the pine needles of Cedrus deodara. Their structures were elucidated on the basis of extensive spectroscopic analysis and chemical evidence.  相似文献   

16.
A new carbamic acid, (1,7a-dihydro-1H-inden-2(7aH)-ylidene)methylcarbamic acid (1), along with three known ones, 12-ursen-28-oic acid-3-O-β-D-glucopyranoside (2), 12-ursen-3-O-β-D-glucopyranoside (3), and 3,7,11,15-tetramethyl-2-hexadecen-1-ol (4), was isolated and identified from Dryopteris wallichiana.  相似文献   

17.
The extract of Casimiroa edulis was investigated for antihypertensive activity. The ethanol and total alkaloids (in chloroform) extracts were found to have antihypertensive properties at doses of 500 and 200 mg/kg, respectively. Four quinolinone alkaloids were isolated and identified as: 2-(2′-hydroxy-4′-methoxyphenyl)-5,8-dimethoxy-3-propyl-1H-quinolin-4-one (1), 5,8-dimethoxy-2-(3′-methoxyphenyl)-3-propyl-1H-quinolin-4-one (2), 5,8-dimethoxy-2-(3′,4′-dimethoxyphenyl)-3-propyl-1H-quinolin-4-one (3), and 5,6-dimethoxy-2-(2′,5′,6′-trimethoxyphenyl)-1H-quinolin-4-one (4). Interestingly, compounds 1, 2, and 3 were found to be new alkaloids. The four isolated alkaloids showed antihypertensive activity at doses of 50, 100, 200, and 300 mg/kg, respectively. Published in Khimiya Prirodnykh Soedinenii, No. 5, pp. 473–476, September–October, 2007.  相似文献   

18.
Two new phenolic compounds, 4-O-β-D-(6-O-gentisoylglucopyranosyl) vanillic acid (1), 2-O-β-D-(6-O-gentisoylglucopyranosyl) gentisic acid (2), together with three known compounds, vanillic acid (3), syringic acid (4), and gentisic acid (5), were isolated from the whole part of Stenoloma chusanum (L.) Ching. Structures of the two new compounds 1, 2 were elucidated on the basis of spectroscopic methods, including twodimensional NMR techniques and HR ESI-MS analysis. The compounds′ activities against Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis, Epidermophyton floccosum, and Aspergillus niger were determined, and the minimal inhibitory concentrations (MIC) were 25–100 μg/mL. Published in Khimiya Prirodnykh Soedinenii, No. 2, pp. 161–164, March–April, 2009.  相似文献   

19.
Two dimeric proanthocyanidines identified as 2R,3R,4R-(-)-epigallocatechin-(4β→ 8)-2R,3R-(-)-epigallocatechin-3-O-gallate and 2R,3R,4R-(-)-epigallocatechin-(4β→8)-(-)-2R,3R,3,5,7,3′,4′,6′-hexahydroxyflavan were isolated by adsorption chromatography over polyamide of the ethylacetate fraction of the aqueous alcohol extract of Limonium gmelinii roots. The former proanthocyanidine was isolated for the first time from sea lavender whereas the latter is new. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 134–138, March–April, 2006.  相似文献   

20.
A novel steroidal saponin, along with 12 known steroidal compounds, was isolated from the rhizomes of Paris polyphylla var. chinensis. Spectral data, including two-dimensional NMR, showed that the structure of the novel saponin was 3β,21-dihydroxypregnane-5-en-20S-(22,16)-lactone-1-O-α-L-rhamnopyranosyl(1→2)-[β-D-xylopyranosyl(1→3)]-β-D-glucopyranoside. The isolated steroidal compounds were evaluated for their cytotoxic activity on human gastric cancer cell line HepG2, SGC7901, BxPC3. Diosgenin-3-O-α-L-rhamnopyranosyl(1→2)[α-L-rabinofuranosyl(1→4)]-β-D-glucopyranoside exhibited the most potent cytotoxic activity among the isolated steroids. Published in Khimiya Prirodnykh Soedinenii, No. 6, pp. 556–560, November–December, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号