首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Applications of synchrotron radiation X-ray fluorescence (SR-XRF) microscopy combined with scanning electron microscopy (SEM) are reported. Electron beam excited and synchrotron radiation induced X-ray emission spectra of the same yellow sand single particles are reported and compared. The Ti-K edge absorption fine structure of single microparticles of TiO2 (rutile, anatase, and a photocatalyst aerosol) are recorded by using monochromatic synchrotron radiation of tunable energy. It is shown that the discrimination between rutile and anatase is possible. Based on the single particle speciation, the toxicity of photocatalyst aerosol powder is discussed.  相似文献   

2.
Morphological characterization of individual particle surfaces was explored by off-line image processing of data obtained by scanning electron microscope — microanalyzer. The fractal geometry was studied by two methods, the power spectrum and the variogram approach. Both methods were evaluated, theoretically by a series of numerically simulated surface profiles and experimentally on a set of pre-recorded secondary electron images of particle surfaces exposing characteristic textures. It was shown that the fractal approach could stand as a base of the methods enlarging the application of electron probe X-ray microanalyzers for individual particle characterization.Dedicated to Professor Dr. Dieter Klockow on the occasion of his 60th birthday On leave from: State Pedagogical Institute, Kirovograd, Ukraine  相似文献   

3.
Electron diffraction has been recently used in the pharmaceutical industry to study the polymorphism in crystalline drug substances. While conventional X-ray diffraction patterns could not be used to determine the cell parameters of two forms of the microcrystalline GP IIb/IIIa receptor antagonist roxifiban, a combination of electron single-crystal and synchrotron powder diffraction techniques were able to clearly distinguish the two polymorphs. The unit-cell parameters of the two polymorphs were ultimately determined using new software routines designed to take advantage of each technique's unique capabilities. The combined use of transmission electron microscopy (TEM) and synchrotron patterns appears to be a good general approach for characterizing complex (low-symmetry, large-unit-cell, micron-sized) polymorphic pharmaceutical compounds.  相似文献   

4.
5.
The potential of a scanning electron microscope will be enhanced markedly by adapting the X-ray fluorescence for material analysis. The illuminating system röntgenbox enables the analyst to execute analyses in the concentration range from 100 percent down to the low ppm range without time consuming preparation steps. X-ray intensities of traces are measured for different anodes in the elemental range fromZ=11 to 90 (sodium to thorium).  相似文献   

6.
We used a micro-Raman spectrometer with two different laser excitation sources (514 and 785 nm) and variable laser powers to identify some uranium chemical species contained in airborne particulate matter. In the first part of this paper, we demonstrate that characteristic Raman bands mentioned in the literature for several uranium compounds relevant in the nuclear industry (UO2, UO4·(4H2O), U3O8, UO2F2 and UF4) can be identified in particles in the few μm to 30 μm size range. In the second part of the paper, we describe a method to carry out Raman analysis on airborne uranium particles sampled along with a majority of other kinds of particles simply by dabbing adhesive carbon disks on dusty surfaces. This methodology involves an SEM equipped with an energy dispersive X-ray analyser and software for automated detection of particles specifically to locate uranium particles on the substrate before the Raman analysis. Then the sample holder is transferred to the micro-Raman spectrometer and particles are relocated using landmarks and simple geometric calculations. Raman analyses are carried out with the laser that gives the best signal to noise ratio. With such a method particles as small as 5 μm can be efficiently analysed, although most of the smaller particles cannot be analysed due to limited precision of the relocation process. This methodology was successfully applied to 20 particles collected in a nuclear facility.  相似文献   

7.
A new Monte Carlo program, Win X-ray, is presented that predicts X-ray spectra measured with an energy dispersive spectrometer (EDS) attached to a scanning electron microscope (SEM) operating between 10 and 40 keV. All the underlying equations of the Monte Carlo simulation model are included. By simulating X-ray spectra, it is possible to establish the optimum conditions to perform a specific analysis as well as establish detection limits or explore possible peak overlaps. Examples of simulations are also presented to demonstrate the utility of this new program. Although this article concentrates on the simulation of spectra obtained from what are considered conventional thick samples routinely explored by conventional microanalysis techniques, its real power will be in future refinements to address the analysis of sample classifications that include rough surfaces, fine structures, thin films, and inclined surfaces because many of these can be best characterized by Monte Carlo methods. The first step, however, is to develop, refine, and validate a viable Monte Carlo program for simulating spectra from conventional samples.  相似文献   

8.
In a previous paper a study of the supported nickel catalysts based on extended X-ray absorption fine structure spectroscopy was presented for analysis of the first coordination shell. The present study evidenced a strong deformation of the local structure of the metal due to its interaction with oxide support. The average particle size, microstrains and probability of faults, the particle size distribution function of supported Ni catalysts were determined by X-ray diffraction method. The method is based on Fourier analysis of experimental X-ray line profile (1 1 1), (2 0 0) and (2 2 0). The global structure is obtained with a fitting method based on the generalized Fermi function facilities for approximation. A chemisorption model was elaborated by correlation of the local and global structure connected with the specific surface areas. The results obtained on supported Ni catalysts which are used in H/D isotopic exchange reactions are reported. Both types of measurements were performed on the Beijing synchrotron radiation facilities.  相似文献   

9.
A scanning electron microscope combined with an energy-dispersive X-ray spectrometer was used to investigate the erosion of the surfaces of aluminium samples after they have been exposed to single and multiple spark discharges in air and in argon. The erosion marks formed under the impact of an oscillating single spark discharge are different for the first and third current half-cycles, respectively, and are also dependent on the environmental gas. A uniform melt was formed at the centre of multiply sparked areas. The actual specimen becomes more inhomogeneous towards the perimeter of the sparked area.  相似文献   

10.
In variable pressure scanning electron microscopy (VPSEM) the current data suggests that considerable caution is required in the interpretation of X-ray data from nonconductive samples, depending on the operating conditions. This article reviews some of the documented approaches and presents data that illustrate the nature and magnitude of the effects of charge above, on, and in the sample on the detected X-ray emissions from the sample and from elsewhere within the VPSEM specimen chamber. The collection of reliable and reproducible X-ray data has been found to require relatively high specimen chamber gas pressures, at the upper end of or beyond the available pressures for most VPSEMs. It is also shown that sample characteristics, including composition, strongly influence local charge effects, which can significantly affect the primary electron landing energy and consequently the resultant emitted X-ray signal under low pressure environments.  相似文献   

11.
Cs correctors have revolutionized transmission electron microscopy (TEM) in that they substantially improve point resolution and information limit. The object information is found sharply localized within 0.1 nm, and the intensity image can therefore be interpreted reliably on an atomic scale. However, for a conventional intensity image, the object exit wave can still not be detected completely in that the phase, and hence indispensable object information is missing. Therefore, for example, atomic electric-field distributions or magnetic domain structures cannot be accessed. Off-axis electron holography offers unique possibilities to recover completely the aberration-corrected object wave with uncorrected microscopes and hence we would not need a Cs-corrected microscope for improved lateral resolution. However, the performance of holography is affected by aberrations of the recording TEM in that the signal/noise properties ("phase detection limit") of the reconstructed wave are degraded. Therefore, we have realized off-axis electron holography with a Cs-corrected TEM. The phase detection limit improves by a factor of four. A further advantage is the possibility of fine-tuning the residual aberrations by a posteriori correction. Therefore, a combination of both methods, that is, Cs correction and off-axis electron holography, opens new perspectives for complete TEM analysis on an atomic scale.  相似文献   

12.
13.
The mechanical behavior of polymer materials is strongly dependent on polymer structure and morphology of the material. The latter is determined mainly by processing and thermal history. Temperature-dependent on-line X-ray scattering during deformation enables the investigation of deformation processes, fatigue and failure of polymers. As an example, investigations on polypropylene are presented. By on-line X-ray scattering with synchrotron radiation, a time resolution in the order of seconds and a spatial resolution in the order of microns can be achieved. The characterization of the crystalline and amorphous phases as well as the study of cavitation processes were performed by simultaneous SAXS and WAXS. The results of scattering experiments are complemented by DSC measurements and SEM investigations. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1574–1586, 2010  相似文献   

14.
The quantitative scanning electron microscope-energy dispersive X-ray (SEM-EDX) analysis of a horneblende and two augite prismatic samples reduced to submicrometric particles was performed, and error due to the particle effects ("absent mass" and the "reduced absorption" effect) was minimized. Correction factors as a function of fragment size were obtained for O, Na, Mg, Si, Ca, and Fe. In addition, the influence of chemical composition of the samples used as standards (the matrix effect) on correction factors was evaluated. The results indicate that the absent mass effect is dominant for all elements except for the light elements O and Na, for which the reduced absorption effect is dominant. No significant matrix effect has been observed. By using corrected SEM-EDX data, the error on quantification of the element concentration has been estimated to be 3% relative for light elements and below 2% relative for heavy elements (notably, about 1% relative for Fe).  相似文献   

15.
Summary It is shown that there exists a direct correlation between the light diffraction pattern of an electron-microscopical picture and the X-ray small angle scattering. By this means it can be proved for native collagen prepared by a special method that the density pattern of stained samples imaged in the electron microscopy is identical with the density pattern available from moist fibres. The reflex intensities of the small angle X-ray scattering are taken for calculating the density structure whereby the necessary phases are delivered by the electron microscopic examination combined with light diffraction.
Zusammenfassung Zwischen der Lichtbeugung an elektronenmikroskopischen Bildern und der Röntgenkleinwinkelstreuung wird die direkte Korrespondenz aufgezeigt. Hierbei kann erwiesen werden, daß das elektronenmikroskopische Bild von speziell präpariertem, nativem Kollagen jene Dichtestruktur widerspiegelt, welche auch im feuchten Zustand vorliegt.Aus den Intensitäten der Röntgenbeugung wird die Elektronendichteverteilung errechnet. Die hierzu erforderlichen Phasen können über die Lichtbeugung aus dem elektronenmikroskopischen Bild entnommen werden.


With 17 figures  相似文献   

16.
Quantitative investigations of insulators by electron beam X-ray microanalysis are normally only possible using special preparation techniques for the samples. Samples were coated by evaporation with thin carbon films, but the analysis will fail if the samples themselves contain carbon. Two ways are proposed for solving this problem. Samples and reference samples with similar composition were initially coated by evaporation with carbon. The k-ratios necessary for the determination of element concentrations were calculated either experimentally by relation of the intensities to those of carbon standards or by computer calculation of the film thicknesses using the k-ratios of reference samples. By means of this calculation it was possible to correct the usually measured k-ratios or intensities of samples via modified depth distribution functions.  相似文献   

17.
Lupane type pentacyclic triterpenes (LTs) are pharmacologically active natural products isolated from different plants. They have broad spectrum of therapeutic action ranging from anticancer via anti-HIV, antibiotic to anti-inflammatory and anti-protozoal activity. Many scientific papers underline that the key stage in the LT mechanism of action is their incorporation into cellular membrane and the interaction with the structural lipids. In our research we apply Langmuir monolayers as a versatile platform for the investigation of these phenomena, since till now important aspects concerning this issue are incomprehensible. We focus our attention on the interactions of lupeol and betulinic acid with choline-headgroup structural lipids: a representative of saturated glycerophosphatidylcholines (DPPCs), and octadecyl-sphingomyelin--a representative of membrane sphingolipids. Application of complementary physicochemical techniques such as the Langmuir technique, Brewster angle microscopy, and grazing incidence X-ray diffraction supported by thermodynamic analysis enabled us to investigate the intermolecular interactions in such binary model systems. Our results corroborate that LT is miscible with the outer leaflet membrane phospholipids, both DPPC and SM in the whole range of mole ratios. Moreover, the introduction of LT into the phospholipid film, even in small proportion, leads to the loss of periodical ordering of the phospholipid molecules and the disappearance of the diffraction signal as observed by GIXD. Our results also proved that LT does not form any surface complexes of fixed stoichiometry resembling the well characterized lipid rafts.  相似文献   

18.
19.
20.
The supreme advantages of electron microscopy (EM) in the chemical sciences are briefly recalled: By judicious use of electron optical techniques, vital information of a structural, mechanistic, compositional, and often of an electronic kind may be retrieved. Not only are insights gained (through EM) into the existence of whole new families of structures hitherto unperceived, but one also uncovers the structural characteristics of imperfections in solids. And it is often the case that these imperfections reflect or suggest altogether new structures, hitherto unconceived. EM is , therefore, a powerful agent for aiding chemical synthesis of new materials. This is particularly important in the field of heterogeneous catalysis, since altogether new types of catalytic materials may be, on the one hand, defined, described, identified, and characterised, and, on the other, designed and synthesised. There is also the ever-improving role of the electron microscope as an analytical tool: Very few other techniques within reach of the chemist can rival it in tis sensitivity and detection limits. (Scanning instruments now permit the imaging and the identification of nanoclusters consisting of just a few atoms.) But there are numerous other branches of chemistry besides catalysis and surface science where EM proves invaluable, as we outline herein, in elucidating structure-property or composition and structure interrelationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号