首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 175 毫秒
1.
吴剑  吕雪芹  金鹏  孟宪权  王占国 《中国物理 B》2011,20(6):64202-064202
A broadband tunable grating-coupled external cavity laser is realized by employing a self-assembled InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) as the gain device. The SLD device is processed with a bent-waveguide structure and facet antireflection (AR) coating. Tuning bandwidths of 106 nm and 117 nm are achieved under 3-A and 3.5-A injection currents, respectively. The large tuning range originates essentially from the broad gain spectrum of self-assembled QDs. The bent waveguide structure combined with the facet AR coating plays a role in suppressing the inner-cavity lasing under a large injection current.  相似文献   

2.
The optical performance of InAs/InGaAsP quantum dot (QD) lasers grown on (1 0 0) InP was studied for three different material structures. The most efficient QD laser structure, having a threshold current of 107 mA and an external differential quantum efficiency of 9.4% at room temperature, was used to form the active region of a grating-coupled external cavity tunable laser. A tuning range of 110 nm was demonstrated, which was mainly limited by the mirror and internal losses of the uncoated laser diode. Rapid state-filling of the QDs was also demonstrated by observing the evolution of the spectra with increasing injected current.  相似文献   

3.
100nm宽光谱可调谐掺饵光纤激光器   总被引:1,自引:0,他引:1  
王东  张敏明  刘晓明  刘德明 《光子学报》2006,35(9):1289-1292
采用1480 nm大功率激光二极管双向抽运,新型铋基掺饵光纤做增益介质,基于旋转法布里-珀罗腔的可调谐滤波器和带通滤波器做选频装置的宽光谱环形腔可调谐光纤激光器,可实现100 nm(1523~1623 nm)激光波长程控连续可调谐输出,激光输出功率大于1.58 mW,3 dB带宽小于0.1 nm,波长重复性准确度小于0.01 nm.  相似文献   

4.
A novel wideband digitally tunable laser based on fiber Bragg grating external cavities and 1×N opticalswitch provides 5 ms fast tuning time with output power more than 1 dBm over whole C-band that is onlylimited by the laser emission bandwidth. Less than 50 pm wavelength drift over-10 to 55℃ temperaturerange make that the wavelength locker and monitor are not necessary in this tunable laser.  相似文献   

5.
针对移频激发拉曼光谱测试系统的小型化需求,在Littrow结构中,采用商用的785nm大功率激光二极管作为增益器件,构建了一款便携式光栅外腔可调谐半导体激光器。该激光器通过采用一种新型的波长调谐方法,即以改变半导体增益器件相对于准直透镜的水平位置来实现波长的连续调谐,实现了尺寸为140mm×65mm×50mm的小型化结构设计。相比于传统的旋转衍射光栅改变光线在光栅上的入射角来实现波长调谐的方式,该方法有效地缩减了增益器件的平移距离,从而有利于便携式外腔激光器波长的快速宽带调谐。实验结果表明,该激光器具有较宽的波长调谐范围,在340~900mA注入电流下均可实现10nm以上的波长调谐,尤其在900mA大注入电流下,其波长调谐覆盖779.40~791.07nm,调谐范围可达11.67nm,且激射线宽小于0.2nm,单波长输出功率最高可达280mW,放大的自发辐射抑制比大于25dB,呈现出较优异的输出性能,满足移频激发拉曼光谱检测系统对光源的基本要求。此外,该激光器可采用一微型压电陶瓷驱动器来实现波长的电动调谐,实验获得了1.35nm的波长调谐范围,证实了所制785nm便携式光栅外腔可调谐半导体激光器适合作为便携式移频激发拉曼光谱检测系统的光源用于减除原始拉曼光谱中的荧光背景。  相似文献   

6.
A computer controlled tunable mid-IR light source, based on single resonant difference frequency generation (DFG), is experimentally investigated. The DFG process is pumped by an external cavity tapered diode laser, tunable over a spectral range of 30 nm. Grating feedback to the single mode channel of the tapered diode narrows the spectrum and allows for tuning of the emitted spectrum in the range from 780 to 810 nm. The DFG process takes place intra-cavity in a high finesse diode pumped 1064 nm solid state Nd:YVO4 laser cavity, using periodically poled LiNbO3 as the nonlinear material. Based on this new approach, a tunable single-frequency output power exceeding 3 mW was obtained in the mid-IR tuning range from 2.9 to 3.4 ??m.  相似文献   

7.
苏丹  窦秀明  丁琨  王海艳  倪海桥  牛智川  孙宝权 《物理学报》2015,64(23):235201-235201
采用光学方法确定InAs/GaAs单量子点在样品外延面上的位置坐标, 利用AlAs牺牲层把含有量子点的GaAs层剥离并放置在含有金纳米颗粒或平整金膜上, 研究量子点周围环境不同对量子点自发辐射寿命及发光提取效率的影响. 实验结果显示, 剥离前后量子点发光寿命的变化小于13%, 含有金纳米颗粒的量子点发光强度是剥离前的7倍, 含有金属薄膜的量子点发光强度是剥离前的2倍. 分析表明在金纳米颗粒膜上的量子点荧光强度的增加主要来自于金纳米颗粒对量子点荧光的散射效应, 从而提高量子点发光的提取效率.  相似文献   

8.
A novel white light-emitting diode based on a large Stokes shift (~200 nm) and using pure green light-emitting CdSeS quantum dots (QDs) with an Ag/ZnSnO/QDs/spiro-TPD/ITO structure has been fabricated in which ZnSnO and spiro-TPD are served as the electron and hole transport layer, respectively. The large Stokes shift of the CdSeS QDs excludes potentially Förster resonance energy transfer process, which allows spiro-TPD to act as both an emitter and hole transport layer. The devices exhibit a wide EL spectrum consisting of three components: blue emission from spiro-TPD, green emission from QD band–band recombination, and red emission from QD surface-state recombination. We further found that as the intensity ratios among these three components vary with bias the color of the QD light-emitting diodes is tunable. The device displays a good white light-emitting characteristic with CIE coordinates of (0.281, 0.384) at an appropriate bias.  相似文献   

9.
Jelger P  Laurell F 《Optics letters》2007,32(24):3501-3503
A skew-angle cladding-pumped tunable Yb-doped fiber laser is presented. The laser was tunable over more than 30 nm, from 1022 to 1055 nm, by employing a volume Bragg grating in a retroreflector configuration as one of the cavity delimiters. Output powers in excess of 4.3 W were recorded with a spectral bandwidth of 5 GHz and an M(2) value below 1.3 over the whole tuning range.  相似文献   

10.
In this paper, we present a continuous-wave tunable fibre ring laser operating in the L-band. A bi-directional pumped L-band erbium-doped fibre amplifier provides gain to the loop. Tunability is achieved by bending a single-mode fibre taper using a micrometer drive, controlling in this way the spectral cavity losses. Laser emission is achieved between 1587 and 1606 nm, and low variation of the output laser power is observed over all the tuning range. PACS 42.55.Wd; 42.60.Da  相似文献   

11.
We propose and demonstrate broadband Brillouin slow light using a multiple-longitudinal-mode tunable fiber laser as Brillouin pump. A tunable broadband Brillouin pump with a tuning range from 1 520 to 1 555 nm is generated using a fiber ring laser with a semiconductor optical amplifier (SOA) as its gain medium. The pump spectrum consists of a large number of longitudinal modes separated by 6 MHz. The 3-dB bandwidth is about 11.5 GHz, and its fluctuation is less than 100 MHz within the tuning range. An 8-Gb/s data signal can be delayed by up to 83.0 ps (bit error rate < 10 9) at 17-dBm pump power.  相似文献   

12.
Jeong YD  Won YH  Choi SO  Yoon JH 《Optics letters》2006,31(17):2586-2588
A tunable single-mode laser is obtained by using a weakly coupled cavity structure involved in a coaxially packaged Fabry-Perot laser diode. The cleaved end facet of the coupling fiber becomes an optical reflector and forms an external cavity with a laser facet. The single-mode oscillation condition is controlled and stabilized by tuning the operating temperature. The tuning range is about 10 nm with the side-mode suppression ratio of more than 27 dB when the temperature changes from 11.5 degrees C to 25 degrees C. Direct modulation characteristics were investigated, and our results show that a shorter external cavity can bear deeper modulation depth.  相似文献   

13.
为增加可调谐激光器的波长调谐范围,提高系统的可靠性和稳定性,基于液晶的电控双折射特性,设计了一种中心波长为852 nm的内腔液晶可调谐垂直腔面发射激光器结构。分析了该结构获得宽范围波长调谐和单偏振稳定输出的物理原理,利用传输矩阵法进一步计算整个器件下不同液晶层厚度所对应的反射谱,得出不同液晶厚度和折射率下激光器的激射波长。结果表明,液晶可调谐激光器单偏振波长调谐范围达到31 nm,调谐效率大于10 nm/V。  相似文献   

14.
We report operation of a tunable optical parametric oscillator that employs a nonlinear-fiber Sagnac interferometer as a parametric amplifier. The amplifier, which consists primarily of dispersion-shifted fiber that has zero dispersion at 1538 nm, is synchronously pumped with 7.7-ps pulses at 1539 nm. The wide bandwidth of the parametric gain permits tuning of the output signal pulses over a 40-nm range centered on the pump wavelength. The Sagnac interferometer decouples the pump wave from the oscillator cavity while a bandpass filter in the cavity transmits only the signal wave, thereby creating a singly resonant parametric oscillator that is phase insensitive. Whereas we demonstrate tuning over almost the entire bandwidth of Er-doped-fiber amplifiers, one could construct a similar device that operates near the 1310-nm zero-dispersion wavelength of standard telecommunication fiber.  相似文献   

15.
We experimentally and theoretically study the impact of optical feedback from an extremely short external cavity (tens of μm) on the spectral behavior of edge emitting lasers (EELs). We are able to investigate a broad range of external cavity lengths and feedback strengths, by using a nanometer precision movable mirror attached to a fiber facet. A discrete modulation of the wavelength of operation is observed and its amplitude depends on the external cavity length and the external mirror reflectivity. We show that it is possible to optimize the tuning range of such a discrete wavelength tunable laser with respect to the external cavity and laser parameters.  相似文献   

16.
陈琤  赵玲娟  邱吉芳  刘扬  王圩  娄采云 《中国物理 B》2012,21(9):94208-094208
We report a monolithic integrated dual-wavelength laser diode based on a distributed Bragg reflector (DBR) composite resonant cavity. The device consists of three sections, a DBR grating section, a passive phase section, and an active gain section. The gain section facet is cleaved to work as a laser cavity mirror. The other laser mirror is the DBR grating, which also functions as a wavelength filter and can control the number of wavelengths involved in the laser action. The reflection bandwidth of the DBR grating is fabricated to have an appropriate value to make the device work at the dual-wavelength lasing state. We adopt the quantum well intermixing (QWI) technique to provide low-absorption loss grating and passive phase section in the fabrication process. By tuning the injection currents on the DBR and the gain sections, the device can generate 0.596 nm-spaced dual-wavelength lasing at room temperature.  相似文献   

17.
We report a monolithic integrated dual-wavelength laser diode based on a distributed Bragg reflector (DBR) composite resonant cavity. The device consists of three sections, a DBR grating section, a passive phase section, and an active gain section. The gain section facet is cleaved to work as a laser cavity mirror. The other laser mirror is the DBR grating, which also functions as a wavelength filter and can control the number of wavelengths involved in the laser action. The reflection bandwidth of the DBR grating is fabricated to have an appropriate value to make the device work at the dual-wavelength lasing state. We adopt the quantum well intermixing (QWI) technique to provide low-absorption loss grating and passive phase section in the fabrication process. By tuning the injection currents on the DBR and the gain sections, the device can generate 0.596 nm-spaced dual-wavelength lasing at room temperature.  相似文献   

18.
We present the operation of an optical device that exhibits diodelike properties based on two adjacent layers of quantum dots (QDs) encased in a fiber-optic jacket. The possibility of a multilayered device is also discussed. A significant change in the emission spectrum of CdSe/ZnS core-shell QDs was observed when excited by the input laser and the fluorescence of other CdSe/ZnS core-shell QDs. The output of the diode can be taken to be either the incoming laser wavelength of light similar to a conventional diode, or the output may be considered to be one of the QD fluorescence wavelengths. Current work has applications in biological fluorescence monitors and sensors as well as in telecommunications applications.  相似文献   

19.
The optical performance of a grating-coupled external Continuous tuning from 1391 nm to 1468 nm is realized at cavity laser based on InAs/InP quantum dots is investigated. an injection current of 1900 mA. With the injection current increasing to 2300 mA, the tuning is blue shifted to some extent to the range from 1383 nm to 1461 nm. By combining the effect of the injection current with the grating tuning, the total tuning bandwidth of the external cavity quantum-dot laser can reach up to 85 nm. The dependence of the threshold current on the tuning wavelength is also presented.  相似文献   

20.
宽带可调谐掺Yb3+双包层光纤激光器的研究   总被引:3,自引:3,他引:0  
利用闪耀光栅构成可调谐Littrow外腔,对掺Yb3+双包层光纤激光器的波长调谐输出进行了实验研究.激光调谐输出波长范围70nm.针对光纤内的双折射效应对激光的输出功率的影响,实验中使用了在线光纤偏振控制器,从而有效地减小了调谐曲线的起伏及其与荧光谱的差别,并得到了窄线宽、线偏振、宽带调谐的激光输出.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号