首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A. Nojima 《Surface science》2007,601(14):3003-3011
We have used density functional theory to investigate hydrogen adsorption and diffusion on a W(1 1 0) surface. Hydrogen adsorption structures were examined from low coverage to one monolayer, and a threefold hollow site was found to be the most stable site at all coverages. In contrast to previous assertions, the work function decrease is not due to electron transfer from the hydrogen atoms to the W surface, but due to electron depletion at the vacuum region above the hydrogen atoms. Hydrogen atoms can diffuse via short-bridge sites and long-bridge sites at a coverage of θ = 1.0. Although the calculated activation energy for hydrogen diffusion via a short-bridge site is as small as 0.05 eV, field emission microscope experiments have shown that the activation energy for hydrogen diffusion is about 0.20 eV, which agrees fairly well with our calculated value of the activation energy via a long-bridge site. This discrepancy can be related to hydrogen delocalization on the W(1 1 0) surface, which has been suggested by electron energy loss spectroscopy experiments.  相似文献   

2.
The adsorption of SH and OH radicals on Ni(111) is treated using an ab initio embedding theory. The Ni(111) surface is modeled as a three-layer, 28-atom cluster with the Ni atoms fixed at bulk lattice sites. The Ni(111) energy surface is very flat for SH adsorption if the H tilt angle is allowed to vary. At both atop and bridge sites, the S---H axis is tilted away from the surface normal by 70°, resulting in the sulfur atom being sp3-hybridized and the adsorption energy being 59 kcal mol−1. For SH at the three-fold site, the S---H axis is normal to the surface, the sulfur is sp-hybridized, and the adsorption energy is 58 kcal mol−1. OH is preferentially adsorbed at the three-fold site. The calculated adsorption energy is 90 kcal mol−1 and the O---H axis is perpendicular to the surface. OH adsorption at the atop and bridge sites is 16 and 5 kcal mol−1 less stable than at the three-fold site, respectively. Atomic H, O and S are preferentially adsorbed at the three-fold site. The calculated adsorption energies are 62, 92 and 87 kcal mol−1, for H, O and S, respectively. The calculated adsorbate---Ni bond distances of 1.86 Å for H, 1.86 Å for O and 2.29 Å for S are in good agreement with experimental data. SH and OH bonding to the surface involves a combination of ionic and covalent contributions and substantial mixing with the Ni 3d orbitals. Dipole-moment calculations indicate strong ionic bonding for the atomic O/Ni system and ionic plus covalent character for the atomic S/Ni interactions. Adsorption of S and O at the three-fold site blocks H adsorption at the nearby surface. Moving H away from the S or O adatom reduces the repulsion. The dissociation of SHad → Sad + Had is calculated to be exothermic by 5 kcal mol−1 and OHad → Oad + Had to be endothermic by 30 kcal mol−1 for infinite separation between S, O and H.  相似文献   

3.
采用密度泛函理论与周期平板模型相结合的方法,对物种CHx(x=2~4)在Fe(110)表面的top,hcp,SB和LB位的吸附模型进行了结构优化、能量计算,得到了各物种较有利的吸附位;并对最佳吸附位进行密立根电荷和总态密度分析。结果表明:CH4在Fe(110)表面的最稳定吸附位都是SB位,吸附能别是-38.14 kJ•mol-1,CH3在Fe(110)表面的最稳定吸附位都是top位,吸附能别是-171.78 kJ•mol-1,而CH2在Fe(110)表面的最稳定吸附位hcp的吸附能是-342.43 kJ•mol-1;CH3 和CH2两物种与金属表面成键,属于化学吸附。  相似文献   

4.
采用密度泛函理论与周期平板模型相结合的方法,对物种CHx(x=2~4)在Fe(110)表面的top,hcp,SB和LB位的吸附模型进行了结构优化、能量计算,得到了各物种较有利的吸附位;并对最佳吸附位进行密立根电荷和总态密度分析。结果表明:CH4在Fe(110)表面的最稳定吸附位都是SB位,吸附能别是-38.14 kJ•mol-1,CH3在Fe(110)表面的最稳定吸附位都是top位,吸附能别是-171.78 kJ•mol-1,而CH2在Fe(110)表面的最稳定吸附位hcp的吸附能是-342.43 kJ•mol-1;CH3 和CH2两物种与金属表面成键,属于化学吸附。  相似文献   

5.
A tensor LEED analysis is reported for the Rh(111)-(2 × 1)---O surface structure in which atoms in the O overlayer chemisorb close to the regular (fcc type) three-fold hollow sites for half-monolayer coverage. The structure shows significant relaxations: for example, a buckling of about 0.07 Å is indicated in the first metal layer and O appears to displace laterally by about 0.05 Å. The individual O---Rh bond lengths are around 2.01 and 1.92 Å to top layer Rh atoms, which bond to two and one O atoms, respectively, but the average value (1.98 Å) is close to that in bulk RhO2 (1.96 Å). Comparison is also made with the previously determined O---Rh bond lengths in the Rh(110)-p2mg(2 × 1) surface structure.  相似文献   

6.
The adsorption of atomic S on the Fe(1 1 0) surface is examined using density functional theory (DFT). Three different adsorption sites are considered, including the atop, hollow and bridge sites and the S is adsorbed at a quarter monolayer coverage in a p(2 × 2) arrangement. The hollow site is found to be the most stable, followed by the bridge and atop sites. At all three sites, S adsorption results in relatively minor surface reconstruction, with the most significant being that for the hollow site, with lateral displacements of 0.09 Å. Comparisons between S-adsorbed and pure Fe surfaces revealed reductions in the magnetic moments of surface-layer Fe atoms in the vicinity of the S. At the hollow site, the presence of S causes an increase in the surface Fe d-orbital density of states between 4 and 5 eV. However, S adsorption has no significant effect on the structure and magnetic properties of the lower substrate layers.  相似文献   

7.
Zhiqiang Ye 《中国物理 B》2022,31(8):86802-086802
Oxidation corrosion of steels usually occurs in contact with the oxygen-contained environment, which is accelerated by high oxygen concentration and irradiation. The oxidation mechanism of steels is investigated by the adsorption/solution of oxygen atoms on/under body-centered-cubic (bcc) iron surfaces, and diffusion of oxygen atoms on the surface and in the near-surface region. Energetic results indicate that oxygen atoms prefer to adsorb at hollow and long-bridge positions on the Fe(100) and (110) surfaces, respectively. As the coverage of oxygen atoms increases, oxygen atoms would repel each other and gradually dissolve in the near-surface and bulk region. As vacancies exist, oxygen atoms are attracted by vacancies, especially in the near-surface and bulk region. Dynamic results indicate that the diffusion of O atoms on surfaces is easier than that into near-surface, which is affected by oxygen coverage and vacancies. Moreover, the effects of oxygen concentration and irradiation on oxygen density in the near-surface and bulk region are estimated by the McLean's model with a simple hypothesis.  相似文献   

8.
First-principles calculations have been performed to investigate the adsorption of oxygen on unreconstructed and reconstructed Ni(1 1 0) surfaces. The energetics, structural, electronic and magnetic properties are given in detail. For oxygen adsorption on unreconstructed surface, (n×1)(n=2,3) substrate with oxygen atom on short-bridge site is found to be the most stable adsorption configuration. Whereas energetically most favorable adsorption phase of reconstructed surface is p(n×1) substrate with oxygen atom located at long-bridge site. Our calculations suggest that the surface reconstruction is induced by the oxygen adsorption. We also find there are redistributions of electronic structure and electron transfer from the substrate to adsorbate. Our calculations also indicate surface magnetic moment is enhanced on clean surfaces and oxygen atoms are magnetized weakly after oxygen adsorption. Interestingly, adsorption on unreconstructed surface does not change surface magnetic moment. However, adsorbate leads to reduction of surface magnetic moment in reconstructed system remarkably.  相似文献   

9.
We employ spin-polarized periodic density functional theory (DFT) to characterize CO adsorption and dissociation on the Fe(1 1 0) surface. We investigate the site preference for CO on Fe(1 1 0) at θCO = 0.25 and 0.5 monolayer (ML), for different functional forms of the generalized gradient approximation (GGA) to electron exchange and correlation within DFT. At 0.25 ML, we predict the existence of a new ordered structure comparable in stability to one proposed previously. At 0.5 ML, we confirm the preference of a distorted on-top adsorption configuration suggested by experiment. The calculated heats of adsorption, CO stretching frequencies, and work function changes agree well with experiment. When dissociating from the on-top site, we predict that CO first moves off the on-top site and then goes through a lying-down transition state with a barrier of 1.52 eV. Diffusion of CO on Fe(1 1 0) from the on-top site to the long-bridge site is predicted to have a very small barrier of 0.1 eV. Dissociation of CO from the long-bridge site goes through the same transition state as from the on-top site, but the former has a slightly lower barrier. After dissociation, O atoms remain on the surface while C atoms are embedded into Fe(1 1 0), indicating C atoms may readily diffuse into Fe(1 1 0).  相似文献   

10.
The adsorption of atomic Se on a Fe(1 1 0) surface is examined using the density functional theory (DFT). Selenium is adsorbed in high-symmetry adsorption sites: the -short and long-bridge, and atop sites at 1/2, 1/4, and 1 monolayer (ML) coverages. The long bridge (LB) site is found to be the most stable, followed by the short bridge (SB) and top sites (T). The following overlayer structures were examined, p(2 × 2), c(2 × 2), and p(1 × 1), which correspond to 1/4 ML, 1/2 ML, and 1 ML respectively. Adsorption energy is −5.23 eV at 1/4 ML. Se adsorption results in surface reconstruction, being more extensive for adsorption in the long bridge site at 1/2 ML, with vertical displacements between +8.63 and −6.69% -with regard to the original Fe position-, affecting the 1st and 2nd neighbours. The largest displacement in x or y-directions was determined to be 0.011, 0.030, and 0.021 Å for atop and bridge sites. Comparisons between Se-adsorbed and pure Fe surfaces revealed reductions in the magnetic moments of surface-layer Fe atoms in the vicinity of the Se. At the long bridge site, the presence of Se causes a decrease in the surface Fe d-orbital density of states between 4 and 5 eV below Fermi level. The density of states present a contribution of Se states at −3.1 eV and −12.9 eV. stabilized after adsorption. The Fe-Fe overlap population decrease and a Fe-Se bond are formed at the expense of the metallic bond.  相似文献   

11.
用理论计算的方法研究了不同覆盖度的乙烯在Ni(110)表面吸附的位置.乙烯的吸附几何结构在团簇计算中进行了局部优化.在低覆盖度下,单个乙烯分子占据了短桥位和顶位之间的中间位置.乙烯分子的C—C轴大致沿衬底的Ni原子链排列(即沿<110>晶向),C—C轴与衬底Ni(110)表面有10°的倾斜角.乙烯分子的C—C键的键长为0151nm.在高覆盖度下(05ML),乙烯在Ni (110)上形成了有序的c(2×4)相,在一个表面元胞内的两个乙烯分子的吸附位置类似于低覆盖度时的结果,但乙烯分子的C—C 键键长分别为0142和0143nm.  相似文献   

12.
The interaction between H adatoms on a surface is calculated within the embedded cluster model of chemisorption. The model is first applied to the case of two H atoms on a free electron surface. The interaction energy is found to be an oscillatory function of the H-H separation Rab. Application of the free electron model to the problem of chemisorption on transition metal surfaces leads to unphysical results with the prediction of formation of ordered H overlayers which are not observed in LEED experiments. We next include the l = 2 TM muffin tins. Results for H adsorption on the low index faces of Ni and Pd substrates are presented. Graphitic structures are predicted for the (111) faces of both Ni and Pd with the H atoms occupying both types of three-fold hollow sites on the surface. This agrees with the results of LEED experiments for H/Ni(111). Comparison with experiment is not possible in the case of H/Pd(111) owing to the lack of low temperature studies for that system. Zig-zag chains with the H atoms adsorbed in sites of three-fold coordination on alternate sides of the TM(110) rows are predicted for both Ni and Pd. This is in agreement with the results of He diffraction experiments for H/Ni(110). No structure determination has been done for H/Pd(110). Adsorption in the four-fold centre sites for H on the (100) faces of Ni and Pd is found to be unfavourable. The H atoms are expected to adsorb in sites of three-fold symmetry below the (100) surface for H on Pd with formation of a c(2 × 2) structure in agreement with the LEED observations. For H/Ni(100) the H atoms are believed to adsorb above the surface, away from the centre site and to bond to two surface Ni atoms. No short-range ordered structures are predicted in this case.  相似文献   

13.
The adsorption position of oxygen on the clean Pt(111) surface has been determined by means of the transmission channeling technique. Oxygen adsorbs in a well ordered p(2 × 2) overlayer structure at temperatures 200 T 350 K. From an analysis of the angular scans along the [111], [110] and [100] axial directions it is concluded that the O atoms are adsorbed in the fcc three-fold hollow site exclusively at a height of 0.85 ± 0.06 Å above the Pt surface layer. From a narrowing of the [111] angular O scan, the O RMS displacement parallel to the surface is found to be 0.16 ±0.03 Å.  相似文献   

14.
Ab initio/effective core potential cluster studies are reported for the interaction of H atoms with bcc iron. The calculations use a one-electron ECP based on the 4s13d7 state of the Fe atom. Two-fold and four-fold sites on the (100) surface as well as octahedral, tetrahedral, and trigonal interior sites were studied. Four-fold surface sites are found to be bound by ~1.5 eV with the H atom ~ 0.5a0 above the surface. Penetration of the surface at a four-fold site involves movement toward a second layer atom and is expected to be unfavorable. Two-fold surface sites have small binding energies ~ 0.25 eV. Penetration of the surface at this site involves movement toward a tetrahedral interior site and is downhill in energy. Tetrahedral interior sites are found to be bound by ~1.3 eV and are a minimum on the potential energy surface. Octahedral sites are a maximum on the potential energy surface and are estimated to be ~ 0.2 eV higher (including lattice relaxation effects). Trigonal sites are found to be a saddle point connecting adjacent tetrahedral sites and this pathway leads to an estimated barrier to diffusion of ~ 0.1 eV (including lattice relaxation effects). The volume expansion for a H atom in a tetrahedral site is calculated to be 21%.  相似文献   

15.
The local structure of the methoxy species on Cu(110) has been investigated experimentally using chemical-state specific O 1s scanned-energy mode photoelectron diffraction (PhD), and also by density functional theory (DFT) calculations. The PhD data show a clear preference for adsorption with the O bonding atoms in short-bridge sites, though the best fit of multiple-scattering simulations to the experimental data is achieved with two slightly different short-bridge geometries. The DFT calculations also show that not only are the short-bridge sites energetically favoured in isolation, but that coordination to pairs of Cu adatoms has a similar energy. A structure consistent with both the PhD data and the DFT calculations is proposed for the previously-observed (5 × 2)pg ordered phase, based on methoxy species in short-bridge sites on pairs of Cu adatoms and on the underlying surface. Simulated scanning tunnelling microscopy images agree well with those observed experimentally, while the model is also shown to be consistent with the qualitative behaviour seen in early X-ray photoelectron diffraction (XPD) forward-scattering experiments.  相似文献   

16.
氯原子在Cu(111)表面的吸附结构和电子态   总被引:1,自引:1,他引:0  
密度泛函理论(DFT)总能计算研究了不同覆盖度下氯原子在Cu(111)表面的吸附结构和表面电子态。计算结果表明,清洁Cu(111)表面自由能 为15.72 ,表面功函数φ为4.753eV。在1/4ML和1/3ML覆盖度下,每个氯原子在Cu(111)表面fcc谷位的吸附能分别等于3.278eV/atom和3.284eV/atom。在1/2ML覆盖度下,两个紧邻氯原子分别吸附于fcc和hcp谷位,氯原子的平均吸附能为2.631eV/atom。在1/3ML覆盖度下,fcc和hcp两个位置每个氯原子吸附能的差值约为2meV/atom,与正入射X光驻波实验结合蒙特卡罗方法得到结果(<10meV/atom)基本一致。在1/4ML、1/3ML和1/2ML覆盖度下,吸附后Cu(111)表面的功函数依次为5.263eV、5.275eV和5.851eV。吸附原子和衬底价轨道杂化形成的局域表面电子态位于费米能级以下约1.2eV、3.6eV和4.5eV等处。吸附能和电子结构的计算结果表明,氯原子间的直接作用和表面铜原子紧邻氯原子数目是决定表面结构的两个重要因素。  相似文献   

17.
采用基于密度泛函理论(DFT)的平面波赝势(PW-PP)方法,研究了ZrMn2(110)清洁表面结构和氢原子在表面的吸附。弛豫表面结构的计算结果表明表面结构的最表层为曲面,且表面结构的原子间隙变小。由1Zr2Mn原子组成的空位是氢原子吸附在ZrMn2(110)表面的最佳吸附位,吸附能为3.352 eV,氢原子吸附后离表面的距离为1.140 Å。Mulliken电荷布居分析表明吸附的氢原子与表面原子的相互作用主要是接近氢原子的第一层原子与氢原子的相互作用。过渡态计算表明被吸附的氢原子进入表面内部需克服的最大势垒为1.033 eV。  相似文献   

18.
利用密度泛函理论和广义梯度近似研究镍吸附在Al(111)表面。在覆盖率为0.25ML下,分析了Ni吸附在Al(111)表面的面心立方洞位、六角密排洞位、顶位和桥位四个高对称位的原子结构和吸附能。比较不同高对称位的吸附能发现,六角密排洞位的吸附能最大,是5.76 eV,是最稳定的吸附位置。详细讨论了两个最低能量结构-三重洞位的电子结构、功函数、表面偶极距和Ni-Al键的特性。在费米能级附近,Ni-3d和Al-3s,3p轨道产生杂化,形成金属间化合键。由于吸附导致双金属体系表面偶极距和功函数的变化。我们发现:Ni原子与Al(111)表面原子间成建主要是共价键,没有表现出明显的静电荷跃迁,相应的产生非常小的表面偶极距。与面心立方洞位相比,六角密排洞位在费米能级附近产生较低的态密度,在键态附近产生较大的杂化。  相似文献   

19.
Using periodic density functional theory we studied adsorption of H2S, HS, S and H on the Fe(310) stepped surface, comparing our results with those on Fe(100). H2S is predicted to weakly adsorb on all high-symmetry sites, with the bridge site at the step edge as preferred one, oriented perpendicularly to the (100) terraces with the two H atoms pointing out of the surface. Adsorption of HS, S, and H is more stable on the bridge, four-fold hollow, and three-fold hollow sites, respectively. The detailed analysis of the computed local density of states show common trends with the behavior of adsorption energies and is able to account for energy differences of all species adsorbed on Fe(100) and Fe(310).  相似文献   

20.
Ab initio total energy calculations within the framework of density functional theory have been performed for atomic hydrogen and oxygen chemisorption on the (0001) surface of double hexagonal packed americium using a full-potential all-electron linearized augmented plane wave plus local orbitals method. Chemisorption energies were optimized with respect to the distance of the adatom from the relaxed surface for three adsorption sites, namely top, bridge, and hollow hcp sites, the adlayer structure corresponding to coverage of a 0.25 monolayer in all cases. Chemisorption energies were computed at the scalar-relativistic level (no spin-orbit coupling NSOC) and at the fully relativistic level (with spin-orbit coupling SOC). The two-fold bridge adsorption site was found to be the most stable site for O at both the NSOC and SOC theoretical levels with chemisorption energies of 8.204 eV and 8.368 eV respectively, while the three-fold hollow hcp adsorption site was found to be the most stable site for H with chemisorption energies of 3.136 eV at the NSOC level and 3.217 eV at the SOC level. The respective distances of the H and O adatoms from the surface were found to be 1.196 ?and 1.164 ?. Overall our calculations indicate that chemisorption energies in cases with SOC are slightly more stable than the cases with NSOC in the 0.049–0.238 eV range. The work functions and net magnetic moments respectively increased and decreased in all cases compared with the corresponding quantities of bare dhcp Am (0001) surface. The partial charges inside the muffin-tins, difference charge density distributions, and the local density of states have been used to analyze the Am-adatom bond interactions in detail. The implications of chemisorption on Am 5f electron localization-delocalization are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号