首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
1 多维分离技术新进展 一维色谱是目前最常用的分离分析方法,然而对于复杂体系如蛋白质组,采用一维分离模式其分离度远远不能满足要求.Giddings理论告诉我们:对于分离机理相互正交的二维分离系统(如色谱),峰的容量应该为两个色谱柱峰容量的乘积.因此,多维分离系统是解决复杂分离体系的一个最佳选择.在多维色谱中二维气相色谱发展较快,目前全二维气相色谱仪业已商品化,其峰的容量达到104以上.而二维液相色谱,尤其是正相/反相二维液相色谱技术发展较为缓慢,其主要的技术瓶颈在于第一维色谱(正相)分离后的流动相严重干扰第二维色谱(反相)的分离.  相似文献   

2.
张祥民 《色谱》2010,28(6):527-528
1色谱保留机理与极限理论模型研究 2一种新型无机-有机杂合材料整体色谱柱 3蛋白质样品的色谱分离与富集方法研究 4一种后修饰蛋白质的气相色谱-质谱测定方法  相似文献   

3.
方群 《色谱》2010,28(8):729-730
1微加工芯片液相色谱柱 基于微流控芯片构建液相色谱系统的独特优势之一,是可以利用微加工技术直接加工具有均一微结构的色谱柱。通过在芯片通道内加工形状规整的微结构(最常见的是微柱)阵列作为色谱的固定相,可显著提高色谱柱的均一性和渗透性。 最近,Detobel等报道了一种带有多孔壳层的微柱阵列色谱柱的加工方法。首先采用干法刻蚀技术在硅片上加工圆柱形微柱阵列,每个微柱的直径是2.4 μm,高度29 μm,具有很高的深宽比,微柱之间的间距为3.2 μm。整个芯片通道(即色谱柱)的宽度为1 mm,高29 μm,长约34 mm,通道的横截面积与200 μm内径的毛细管相近。利用阳极键合法将加工好的硅片与玻璃盖片实现键合。进一步采用溶胶-凝胶技术在微柱阵列表面加工多孔硅胶层,该壳层厚度为0.5 μm,因此加工壳层后的微柱直径变为3.4 μm,微柱间的通孔尺寸变为2.2 μm。最后,对色谱柱内壁表面进行水热法介孔化处理和C8硅烷化处理,完成整个色谱柱的加工。色谱柱孔隙率为66%~68%,渗透性为1.3×10-13 m2。该色谱柱被应用于两种香豆素染料的快速分离。在不到5 s的时间内,在1.6 mm长的分离柱上实现了两种香豆素染料C440和C480的快速分离。分离的塔板高度分别为3.9 μm(无保留组分)和6 μm(保留因子为6.5)。 上述方法将溶胶-凝胶整体柱加工技术与微加工微柱阵列柱技术结合起来,加工具有多孔壳层的微柱阵列色谱柱,提出了微加工色谱柱的一种新的结构模式。其优点是可分别单独控制色谱柱内通孔的大小和硅胶多孔层的厚度,因此,采用微柱阵列色谱柱可同时获得较高的分离效率和柱渗透性。详见: Anal. Chem., published on Web, 2010, 7, DOI: 10.1021/ac100971a。 2应用于快速法庭DNA分析的集成化微流控系统 微流控分析的兴起最早源于微全分析系统(μTAS)概念的提出,即在芯片上集成包括试样预处理、反应、分离和检测的所有功能单元,实现系统的集成化和微型化。但目前文献报道的微流控分析系统多数只是实现了部分功能单元的集成化,而能够实现所有功能单元集成化并将其应用于实际样品分析的报道则很少。 Hopwood等最近报道了用于快速法庭DNA分析的集成化微流控系统,在实践微全分析系统概念方面提供了一个较为成功的范例。该系统中采用一次性使用的卡盒式DNA预处理芯片,芯片上集成微泵和微阀,直接将取自分析对象口腔的样品以及试剂传输至芯片上的各种微室内,完成DNA纯化、聚合酶链反应(PCR)扩增、扩增产物的收集等操作。然后再将扩增产物传输至卡盒上方的毛细管电泳芯片上,对经过扩增的短串联重复片段进行快速分离,分离分辨率达到1.2个碱基对。采用激光诱导荧光检测器对分离后的DNA片段进行检测。然后对所得到的分离数据进行处理,得到分析对象的DNA指纹图,再将其与数据库中的DNA指纹图进行比对。全部分析过程(包括从分析对象取样到将分析结果与数据库进行比对)可在不到4 h的时间内完成。详见: Anal. Chem., published on Web, 2010, 7, DOI: 10.1021/ac101355r。 3 芯片毛细管电泳系统应用于临床分析 近日,Vanderschaeghe等报道利用商品化芯片毛细管电泳分析仪进行临床血清样品中的肝糖测定(GlycoHepatoTest),在微流控分析系统的实用化方面取得了显著进展。肝糖测定的目的是通过测定血清中一组N-多糖组分(生物标志物)的分布和随时间的变化,实现对肝脏纤维化患者的病程监测和肝硬化的早期诊断。 作者首先采用临床实验室中常见的PCR扩增仪完成血清样品的多步预处理和多糖标记操作,用时3 h。多糖的标记采用荧光标记试剂8-氨基芘-1,3,6-三磺酸(8-aminopyrene-1,3,6-trisulfonic acid, APTS)进行。其后,采用3种商品化芯片毛细管电泳分析仪(包括安捷伦公司的2100 Bioanalyzer,岛津公司的MCE-202 MultiNA System, eGene公司的改进型eGene Apparatus)对样品进行快速分析。3种仪器均获得较好的分离结果,11种APTS标记的多糖组分多数得到基线分离。其中分离速度较快者,可在2 min内完成分离,而其分离距离不到2 cm。 上述工作建立了一个实用的用于临床糖组学分析的平台,能可靠地进行临床实际血清样品的肝糖测定,对于在临床实验室开展糖组学研究以及对慢性肝病患者进行监测和早期诊断具有重要意义。此外,该系统的一个潜在的应用是在药学研究中对重组糖蛋白的糖基化进行快速筛查。详见: Anal. Chem., published on Web, 2010, 7, DOI: 10.1021/ac101560a。 4便携式臭氧分析仪 分析仪器的微型化一直是分析仪器发展的主要方向之一。如何实现分析仪器的微型化、便携化及应用的现场化,对组成仪器各部件的设计和加工均提出了很大的挑战。最近Andersen等报道了一个适用于个体化臭氧监测的便携化臭氧分析仪。分析仪基于紫外吸收原理,采用低压汞灯作为光源,光电二极管为光检测器。“U”形吸收池采用石英管、铝块和反光镜等材料搭建,检测光程为15 cm,体积为3 mL。分析仪内,采用气泵将空气样品吸入检测系统中,利用电磁阀每隔5 s交替将空气样品和经过臭氧清除器处理的空气引入吸收池。臭氧清除器的使用可消除空气中其他有紫外吸收的物质对臭氧测定的干扰。此外,在空气样品进入吸收池前,还要经过一段Nafion管,以消除空气湿度变化对测定的干扰。分析仪采用电池供电,所有部件实现全集成化,整机尺寸为10 cm×7.6 cm×3.8 cm,重量小于1 kg。 该分析仪在10 s内可完成一次样品的测定,对空气中臭氧测定的线性范围为0~500 ppbv (R2=0.9999);测定精度达到2 ppb,对臭氧的检出限(S/N=3)达到4.5 ppbv。由于在仪器研制过程中对实际环境中影响测定的因素,如温度和空气湿度等,进行了详细考察并采取了相应的解决措施,因此在实际测定过程中,分析仪的位置、温度和振动变化对测定的准确度均无明显影响。详见: Anal. Chem., published on Web, 2010, 7, DOI: 10.1021/ac1013578。  相似文献   

4.
刘震 《色谱》2011,29(6):467-468
教授,博士生导师,70年8月出生。1992年7月于贵州大学化学系获理学学士学位,1995年7月于南京大学化学化工学院获理学硕士学位,1998年7月于中国科学院大连化学物理研究所获理学博士学位。2000年1月至2002年1月,日本兵库大学(University of Hyogo)日本学术振兴会(JSPS)特别研究员。2002年8月至2005年11月,加拿大滑铁卢大学(University of Waterloo)博士后。2005年12月起任南京大学化学化工学院教授,2006年3月起为博士生导师;2008年入选教育部“新世纪人才计划”,2011年4月起任滑铁卢大学兼职教授。第五届《色谱》杂志编委。主要研究方向:以液相色谱、毛细管电泳和生物质谱为核心技术,发展创新性生物分子识别、富集、分离、检测和鉴定新原理、新技术和新方法。合著专著1本,发表论文70余篇,SCI引用1000余次,申请专利5项  相似文献   

5.
6.
杨更亮 《色谱》2011,29(8):699-700
整体柱由于具有制备方法简单、通透性好、柱容量大、易实现快速分离的优点,近年来在生物大分子的高效、快速、高通量分离分析方面得到了较快的发展。但是由于有机聚合物整体柱的表面积小(只有几十平米/g),内部结构不均一,因此还存在分离小分子物质柱效低的缺点。最近,人们在努力寻求一种较为完美的低压高效的功能化色谱分离介质的制备方法,以期能够在大分子和小分子等多种物质的分离分析中得到普遍应用。  相似文献   

7.
8.
近期色谱研究亮点   总被引:1,自引:1,他引:0  
康经武 《色谱》2010,28(3):223-224
1一种高灵敏的微流芯片电泳的检测方法 发展高灵敏的微流芯片电泳检测技术一直是人们关注的一个焦点。最近,广西师范大学赵书林教授领导的课题组发展了一种基于化学发光共振能量转移(CRET)的高灵敏微流芯片检测方法。他们发现,一些有机化合物(如氨基酸、有机酸、甾体、生物胺和有机硫化物)会抑制鲁米诺和CdTe量子点之间的共振能量转移,从而降低样品区带内的荧光,产生类似间接荧光检测的倒置的电泳谱图。相比于电化学和激光诱导荧光检测,他们发展的检测方法具有操作更简单、灵敏度更高(提高10到1000倍)、通用性更好等特点,且不需要荧光标记。该方法的检测灵敏度可以满足单个血红细胞中9种氨基酸的检测。详见:Anal Chem, 2010, 82: 2036-2041。 2黄蜂蜘蛛性外激素的气相色谱-质谱(GC-MS)鉴定 色谱在生命科学研究中起着越来越重要的作用,对昆虫性外激素的研究即是一例。昆虫性外激素大多数是几种小分子有机化合物组成的混合物。昆虫在交配季节会释放特定组成和含量的性外激素,诱导异性前来约会。不同种类的昆虫之间从不会出现信息传递和解读的错误。这非常类似于人类发明的通讯密码。这种现象使科学家感到非常困惑。最近,德国的两个科学家Gabriel Uhl和Stefan Schulz领导的研究团队合作借助于顶空采样技术和GC-MS技术揭开了黄蜂蜘蛛的性外激素的秘密。他们将雌性的蜘蛛放在玻璃盒内,用活性炭作为吸附剂富集黄蜂蜘蛛在未成熟期、处女期和交尾后3个阶段所释放的挥发性化学物质,用GC-MS分析经二氯甲烷洗脱富集的挥发性物质。对比蜘蛛在这3个阶段所释放出的挥发性物质,他们推测蜘蛛在处女期强烈释放出的化合物A,即甲基柠檬酸三甲酯,很可能就是性外激素。进一步的分析表明化合物A实际上是按照一定比例组成的甲基柠檬酸三甲酯的两个非对映异构体。他们用手性GC柱确定了这两个非对映异构体的绝对构象为2R, 3S和2S, 3S。进一步由不对称合成得到了2R, 3S和2S, 3S这两个异构体,并按6∶1的比例配制成人工的性外激素,结果在野外成功地诱捕到了雄性的黄蜂蜘蛛。这一研究为昆虫性外激素的研究提供了一条有效的途径。详见:Angew Chem Int Ed, 2010, 49: 2033-2036。 3薄层色谱(TLC)的新故事 尽管高效液相色谱风行天下,但作为经典色谱技术之一的薄层色谱仍然被作为一种非常简便、廉价的分离分析工具而受到有机化学家的青睐。事实上,薄层色谱技术的发展并非停止不前,超薄层色谱(ultra-thin-layer chromatography, UTLC)的出现即是一例。UTLC能在只有10 μm厚的整体硅胶层上实现快速高效的分离,在结构上非常容易实现二维分离,或与基质辅助激光解吸飞行时间质谱仪(MALDI-TOF MS)联用。但是,用常规的薄层扫描色谱仪的点样器很难点出足够小的样品点以实现高的分离效率;另外,由于超薄层板是半透明的,如果点样的斑点太小,则又很难被薄层色谱检测器检测。最近,德国和加拿大科学家合作发表的论文讲述了他们是如何利用办公室喷墨打印机和扫描仪很好地解决UTLC的点样和检测的问题。他们使用一台能够在CD盘上打印的佳能Bubble Jet打印机,将混合的食品色素溶液放入空的打印墨盒中,用绘画软件画好设定大小的斑点,由喷墨打印机将斑点打印到UTLC板上;拿出点好样的薄层板,在普通的TLC仪器上展开后,板面朝下放入扫描仪中,通过扫描仪的扫描就可以方便地检测分离结果。实验结果表明,用喷墨打印机和扫描仪在点样精度和检测灵敏度方面大大优于常规的薄层色谱扫描仪的电喷嘴和影像系统。详见:Anal Chem, Publication Date (Web): February 15, 2010, DOI: 10.1021/ac902945t。 另一篇关于在薄层板上实现快速二维色谱分离工作的论文是由加州大学伯克利分校的Svec教授和北京大学的刘虎威教授课题组合作完成的。他们在4.0 cm×3.3 cm的玻璃板上通过光引发聚合制成50 μm厚的整块的超疏水性聚合物层。通过在聚合前遮挡一小部分的光照,就可以在玻璃板上预留一个600 μm宽的通道。以2-丙烯酰氨基-2-甲基-1-丙烷磺酸作为单体,通过光接枝聚合法修饰这一通道后,就能用来做第一维的离子交换色谱分离。由于巨大的表面张力差异,水相流动相被限定在第一维通道内,而整体超疏水性聚合物层可以作为第二维反相色谱的分离介质。他们用一组多肽混合物验证了这一快速二维分离设想的实用性。实验中,研究者采用了紫外光可视化和解吸电喷雾离子化-质谱两种检测技术。这样的实验设计为多维薄层色谱分离技术的发展提供了新思路。详见:Anal Chem, 2010, 82: 2520-2528。 4高通量的top-down蛋白质鉴定方法 在蛋白质组学研究中,有两种方法被用来鉴定复杂的混合蛋白质样品。一种方法是bottom-up(自下而上)方法,即先用蛋白质水解酶将蛋白质混合物消解成混合的多肽片段,再采用液相色谱-串联质谱分析;另一种方法是top-down(自上而下)方法,该方法不需要用酶水解蛋白质,可直接采用质谱裂解技术鉴定出完整的蛋白质结构。前一种方法已经被广为使用,但第二种方法由于缺少能够分离和检测完整蛋白质的高通量技术而仍然处于发展的初期。最近,Illinois大学的Neil Kelleher及其同事提供了一种基于纳升级液相色谱-质谱(nano-LC-MS)的高通量鉴定完整蛋白质的top-down方法。首先,他们建立了全蛋白质的nano-LC-MS线性离子阱质谱分离测定方法。他们发现,使用聚苯乙烯柱可以在0.3 pmol水平上分辨出用来测试的所有的7种蛋白质,而使用硅胶C4柱只能分辨出其中的4种蛋 白质。使用聚苯乙烯柱分离蛋白质获得的质谱检测的信噪比是反相硅胶柱的2~3倍。作者还发现聚苯乙烯填料的孔径大小会显著影响全蛋白质的分离效果。相对于小孔径的填料,孔径为100 nm (1000 )的聚苯乙烯填料能够使相对分子质量(Mr)分布范围很宽的蛋白质获得更好的分离,得到更高的柱效。由于线性离子阱质谱具有更快的扫描速度和更高的信噪比,因此作者选用离子阱质谱而非傅里叶变换离子回旋共振质谱(FTICR-MS)来进行蛋白质的Mr测定。由于在离子阱内无法选择Mr巨大的蛋白质的电荷状态,也就无法采用碰撞诱发的裂解碎片化方式。因此,作者采用NSD(Nozzle-Skimmer Dissociation)碎片化技术使蛋白质裂解,从而获得高分辨的蛋白质碎片的质谱结果。为了能够用于实际样品中蛋白质的测定,研究者采用8通道的GELFrEETM系统对从酵母细胞或人HeLa S3细胞中提取的蛋白质混合物进行预分离,从而将Mr为10000到100000的蛋白质分成了32个组分,然后采用建立好的nano-LC-MS方法对不同Mr范围的蛋白质组分进行分析测定。另外,还可以采用二维电泳获得更高分离度的预分离。研究者相信他们的技术可以达到与bottom-up方法相当的分析通量。这一工作展示了全蛋白质高通量鉴定的可行性。详见:Anal Chem, 2010, 82: 1234-1244。  相似文献   

9.
屈锋 《色谱》2010,28(9):821-822
1无机多聚磷酸盐的毛细管凝胶电泳分析多聚磷酸盐是一种由几个至数百个磷酸残基相互聚合形成的线性多聚体,广泛存在于自然界的无机环境和细菌、真菌等低等单细胞生物和高等哺乳动物等生命有机体中。多聚磷酸盐分析是探寻地球生命的化学和生物起源的基本研究内容。传统的多聚磷酸盐分析主要采用凝胶电泳和凝胶染色检测,方法烦琐,耗时长。采用阴离子交换色谱结合电导检测,对磷酸盐聚合度应用范围较窄。多聚磷酸盐的毛细管电泳分析主要采用涂层毛细管和管内填充线性聚丙烯酰胺筛分介质的方法,其在毛细管的重复使用、方法的重现性以及高聚合度多聚磷酸盐的分析中存在不足。Whitesides等用低黏度的聚N,N-二甲基丙烯酰胺(PDMA)作为毛细管凝胶电泳介质,以对苯二甲酸盐为背景吸收电解质,通过优化背景电解质的pH等手段实现了聚合度可达70的聚磷酸盐的高分辨分离和间接灵敏检测。通过在出口端样品瓶中加入聚乙二醇(PEG)与毛细管内溶液密度平衡,使分离电流稳定,重现性提高。该方法简单、方便,并可拓展用于其他无生色团的生物高分子多聚阴离子混合物(如硫酸多糖、低聚磷酸盐二酯、磷壁酸、透明质酸、磷酸软骨素等)的高分辨分析检测。详见: Anal Chem, 2010, 82: 6838~6846。 2压力辅助的毛细管电泳超快速分析红细胞样品中的腺苷酸组分腺嘌呤核苷三磷酸(ATP)、腺嘌呤核苷二磷酸(ADP)和腺嘌呤核苷单磷酸(AMP)组成了生物体中的腺苷酸系统,它们在生物体中起重要的生物功能作用。ATP是体内组织和细胞的一切生命活动所需能量的直接来源,生命活动的过程中活细胞内部时刻进行着ATP与ADP的相互转化,同时也伴随着能量的储存和释放。3种腺苷酸还参与蛋白质、脂肪、糖和核苷酸的合成,并具有促使机体细胞的修复和再生、增强细胞代谢活性等作用。应用液相色谱分析3种腺苷酸所需的时间为30~45 min。基于3种腺苷酸具有明显不同的负电荷性质,采用毛细管电泳可对其进行快速的分离分析。Zinellu等在前期短端进样快速分析(Electrophoresis, 2008, 29: 3069)的基础上,创建了电泳过程中同时加压辅助电泳分离的超常规压力/电压技术。他们使用了贝克曼公司配有二极管阵列检测器(DAD)的MDQ CE 系统。分离在20 mmol/L醋酸钠缓冲液(pH 3.8)、30 ℃、 25 kV(120 mA)、反向电压(正极为出口端)条件下进行,电泳分离的同时由进样端(负极)向出口端(正极)施加1.378 kPa (0.2 psi)的压力。为避免ATP的水解,他们还对采用酸沉淀方法提取红细胞中腺苷酸的条件进行了优化。采用此方法,3种腺苷酸可在1.5 min内实现高分辨分析,20个红细胞样品的测定可在60 min内完成。该方法可用于临床实际样品中ATP的准确和高通量的超快速分析。该方法也对开发商用毛细管电泳仪的电泳和压力双功能分离作用提供了新的思路。详见: Electrophoresis, 2010, 31: 2854~2857。 3包埋纳米金的聚阳离子涂层毛细管电泳和硼掺杂金刚石电极电化学检测的尿液生物标志物的电泳分析体液中与疾病相关的生物标志物的发现和分析是近年来生物医学分析检测中的重要内容之一。尿液中香草扁桃酸(VMA)和高香草酸(HVA,儿茶酚胺代谢物)含量及相对比值的分析有助于对疾病发展阶段、肿瘤发展、儿童的神经母细胞瘤的预测。发展尿液和其他生物样品中生物标志物的快速灵敏的分析方法具有重要的临床意义。Luong等提出在色氨酸和其他8种重要的多巴胺和吲哚胺类物质共存时检测3-吲哚硫酸盐(IXS,色氨酸代谢物)、HVA和VMA的毛细管电泳分析检测新方法。通过包埋在聚二烯丙基二甲基氯化铵的纳米金(27 nm)对毛细管内壁的涂层修饰,形成稳定的内壁涂层。该涂层使电渗流反向,使IXS、HVA和VMA快速迁移,而其他内源性化合物抗坏血酸、尿酸、儿茶酚胺和吲哚胺的迁移滞后。该涂层的性质稳定,提高了上述多种分析物分离的分辨率。此外,该毛细管电泳分析中使用热丝化学气相沉积构建的硼掺杂金刚石电极对分析物进行了高灵敏的电化学检测,该电极在反复用于实际尿样分析后也不会被污染。详见: Anal Chem, 2010, 82: 6895~6903。 4毛细管区带电泳表征接枝和非接枝乳清蛋白的氧化铁核/硅壳纳米粒子当今的生物医学分析检测中越来越多地引入纳米粒子。大家所关注的除量子点外,超顺磁性的氧化铁纳米粒子因在磁共振影像中作为造影剂,在热疗治疗、药物输送、肝细胞分离和纯化、荧光细胞标记以及脱氧核糖核酸(DNA)纯化中得到了广泛的应用。所有这些应用都需要对纳米粒子进行表面修饰。在前期的研究中,毛细管电泳方法主要用于表征生物大分子接枝的量子点纳米粒子。Varenne等报道了氨基酸/PEG双功能基团修饰的氧化铁核/硅壳的纳米粒子表面接枝α-乳清蛋白和非接枝蛋白纳米粒子的毛细管电泳表征和分离方法。利用DDAB(didodecyldimethylammonium bromide)动态涂层或HPC(hydroxypropylcellulose)永久涂层修饰的毛细管,研究了使胶体溶液稳定并可与后续免疫分析兼容的优化分离条件,如温度、溶液pH、离子强度和电场强度等。纳米粒子的分散和聚集状态可由毛细管电泳轮廓图清晰表征;接枝蛋白和非接枝蛋白纳米粒子在10 mmol/L 2-(N-吗啉)乙磺酸(MES)/NaOH(pH 6.0)溶液中,在18~60 ℃范围内保持稳定,温度对二者的Zeta电位没有明显的影响;在不同pH(pH 4.5~8)缓冲液体系中,接枝蛋白和非接枝蛋白纳米粒子的迁移率差别不明显,仅当溶液的pH=4(小于乳清蛋白的pI)时,因接枝蛋白表面带正电荷,接枝蛋白纳米粒子的迁移率显著大于非接枝蛋白纳米粒子。考虑后续为适应抗原-抗体反应和接枝蛋白存储的稳定性,pH 6是最佳的选择;在电泳分析中,应用两种不同涂层的毛细管进行分离,电场强度对接枝蛋白和非接枝蛋白纳米粒子的影响有所不同:DDAB涂层的毛细管适合采用低电压分离,而HPC涂层的毛细管适合采用高电压分离。离子强度影响纳米粒子的稳定性和聚集状态,影响接枝蛋白和非接枝蛋白纳米粒子的聚集形成,并对两种粒子影响的阈值不同(接枝蛋白>30 mmol/L,非接枝蛋白>100 mmol/L)。该方法表明,毛细管电泳是表征纳米粒子功能化修饰过程随着时间、溶液条件等变化的简单有效的方法,在肉眼尚不能观察到其变化的时间(1~2 d)内,可以准确灵敏地检测其修饰和聚集状态,是纳米粒子常规表征方法的一种简便、快速和可行的替代方法。详见: Electrophoresis, 2010, 31: 2754~2761。  相似文献   

10.
11.
Huang X 《色谱》2012,30(5):431-433
<正>1用作酶反应器载体酶反应器是蛋白质组学研究中一个重要的组成部分。具有诸多优点的整体材料作为构建微量蛋白酶反应器的理想载体受到了越来越多的关注。最近,中科院生态研究中心的汪海林研究小组[1]制备了一种新的毛细管整体生物反应器。他们首先以四甲氧基硅烷为原料制备了内径为  相似文献   

12.
张玉奎  邹汉法  李秀珍  卢佩章 《色谱》1986,4(5):282-284
§5-4 硅胶色谱的应用特点 硅胶上样品的保留程度,主要由样品分子上极性最强的官能团的极性所决定的。根据表5-4中极性序列来预测族类的分离。  相似文献   

13.
《有机化学》2010,30(1):149-150
  相似文献   

14.
《有机化学》2010,30(2):314-315
  相似文献   

15.
《有机化学》2011,31(1):148-149
  相似文献   

16.
关亚风  吴大朋 《色谱》2010,28(12):1115-1116
1微机电谐振气相色谱检测器 2高灵敏表面离子化气相色谱检测器 3微型化低功耗的二维气相色谱聚焦调制器 4阵列微柱体式芯片液相色谱柱  相似文献   

17.
18.
《色谱》2017,35(7):0-0
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号