首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mixed-valent compound YbBaCo4O7 is built up of Kagomé sheets of CoO4 tetrahedra, linked in the third dimension by a triangular layer of CoO4 tetrahedra in an analogous fashion to that found in the known geometrically frustrated magnets such as pyrochlores and SrCr9xGa12−9xO19 (SCGO). We have undertaken a study of the structural and magnetic properties of this compound using combined high-resolution powder neutron and synchrotron X-ray diffraction. YbBaCo4O7 undergoes a first-order trigonal→orthorhombic phase transition at 175 K. We show that this transition occurs as a response to a markedly underbonded Ba2+ site in the high-temperature phase and does not appear to involve charge ordering of Co2+/Co3+ ions in the tetrahedra. The symmetry lowering relieves the geometric frustration of the structure, and a long-range-ordered 3-D antiferromagnetic state develops below 80 K.  相似文献   

2.
Phase equilibria at subsolidus area of quasi-triple BiO1.5–CaO–CoOy system in air have been studied. The formation of triple oxide Bi2Ca2Co1.7Ox and limited number of solid solutions (Ca,Bi)3Co4O9+δ has been established. The triangulation of BiO1.5–CaO–CoOy system in air at 973 K has been carried out.  相似文献   

3.
The phase diagram of the La–Ca–Co–O system at 885 °C in air has been determined. The system consists of two materials that have interesting thermoelectric properties, namely, the misfit layered thermoelectric oxide solid solution, (Ca,La)3Co4O9, and Ca3Co2O6 which consists of 1D chains of alternating CoO6 trigonal prism and CoO6 octahedra. The reported La2CaO4 and the Ca-doped (La,Ca)2CoO4−z phases were not found at 885 °C. As a result of the absence of these phases, the phase diagram is significantly different from that reported at 1100 °C. Small solid solution regions of (La1−xCax)2O3−z (0 ≤ x ≤ 0.08), (Ca1−xLax)3Co4O9 (0 ≤ x ≤ 0.07), and (La1−xCax)CoO3−z (0 ≤ x ≤ 0.2) were established.  相似文献   

4.
《Solid State Sciences》2007,9(9):869-873
Orthorhombic K2NiF4-type (Ca1+xSm1−x)CoO4 (0.00  x ≤0.15) with space group Bmab has been synthesized by the polymerized complex route. The cell parameters (a and b) decrease, while the cell parameter (c) increases with increasing Co4+ ion content. The global instability index (GII) indicates that the crystal stability of (Ca1+xSm1−x)CoO4 is not influenced by the Co4+ ion content. (Ca1+xSm1−x)CoO4 is a p-type semiconductor and exhibits hopping conductivity in the small-polaron model at low temperatures. The magnetic measurement indicates that (Ca1+xSm1−x)CoO4 shows paramagnetic behavior above 5 K, and that the spin state of both the Co3+ and Co4+ ions is low. The Co4+ ion acts as an acceptor, and the electron transfer becomes active through the Co3+–O–Co4+ path as the Co4+ ions increase.  相似文献   

5.
The CaO-½Eu2O3-CoOz system prepared at 885 °C in air consists of two calcium cobaltate compounds, namely, the 2D thermoelectric oxide solid solution, (Ca3−xEux)Co4O9−z (0 ≤ x ≤ 0.5) which has a misfit layered structure, and the 1D Ca3Co2O6 compound which consists of chains of alternating CoO6 trigonal prisms and CoO6 octahedra. Ca3Co2O6 was found to be a point compound without the substitution of Eu on the Ca site when prepared at 885 °C. A solid solution region of distorted perovskite, (Eu1−xCax)CoO3−z (0 ≤ x ≤ 0.22, space group Pnma) was established. The (Eu0.91(1)Ca0.09(1))CoO3−z perovskite member has a distorted structure with tilt angles θ (17.37°), ϕ (8.20°), and ω (19.16°) which represent rotations of an octahedron about the pseudo-cubic perovskite [110]p, [001]p and [111]p axes. The reported Eu2CoO4 phase was not observed at 885 °C, but a ternary Ca-doped oxide, (Eu1+xCa1−x)CoO4−z (Bmab) where 0 ≤ x ≤ 0.10 was found to be stable at this temperature. In the peripheral binary systems, Eu was not present in the Ca site of CaO, while a small solid solution region was identified for (Eu1−xCax)O(3−z)/2 (0 ≤ x ≤ 0.05). Seven solid solution tie-line regions and six three-phase regions were determined in the CaO-½Eu2O3-CoOz system in air.  相似文献   

6.
The Co–Mn/Ti–Ce catalyst prepared by sol–gel and impregnation method was evaluated for catalytic oxidation of Hg0 in the simulated flue gas compared with Co/TiO2 and Co–Mn/TiO2. The results showed that Co–Mn/Ti–Ce catalyst exhibited higher catalytic activity (around 93% Hg0 removal efficiency in the temperature of 150 °C with 6% O2, 400 ppm NO, 200 ppm SO2 and 3% H2O) than Co/TiO2 and Co–Mn/TiO2. Based on the characterization results of N2 adsorption–desorption, XRD, UV–Vis, XPS, H2-TPR and Hg-TPD, it could be concluded that the lower band gap, better reducibility and mercury adsorption capability and the presence of Co3+/Co2+, Mn4+/Mn3+ and Ce4+/Ce3+ redox couples as well as surface oxygen species contributed to the excellent Hg0 oxidation removal performance. In addition, well dispersion of active components and a synergetic effect among Co, Mn and Ce species might improve the activity further. A Mars–Maessen mechanism is thought to be involved in the Hg0 oxidation. The lattice oxygen derived from MnO x or CoO x would react with adsorbed Hg0 to form HgO and the consumption of lattice oxygen could be replenished by O2. For Co–Mn/Ti–Ce, MnO x?1 could be alternatively reoxidized by the lattice oxygen derived from adjacent CoO x and CeO x which is beneficial to the Hg0 oxidation.  相似文献   

7.
With an objective to assess the chemical stabilities and their consequences in cell performance, the variations of oxygen content with lithium content (1−x) in chemically delithiated Li1−xCoO2, Li1−xNi0.85Co0.15O2, and Li1−xMn2O4 cathodes have been monitored with redox titrations. The Li1−xCoO2 system tends to lose oxygen from the lattice at deep lithium extraction, while the Li1−xNi0.85Co0.15O2 system does not lose oxygen at least for (1−x)>0.3. The chemical instability with a tendency to lose oxygen at deep lithium extraction could be the reason for the limited practical capacity of the Li1−xCoO2 system (140 mA h/g) compared to that realized with the Li1−xNi0.85Co0.15O2 system (180 mA h/g). The Li1−xMn2O4 spinel maintains an oxygen content of 4.0 without losing any oxygen for 0.15⩽(1−x)⩽1.  相似文献   

8.
The chemical stability of the layered Li1−xCoO2 and Li1−xNi0.85CoO.15O2 cathodes is compared by monitoring the oxygen content with lithium content (1−x) in chemically delithiated samples. The Li1−xCoO2 system tends to lose oxygen from the lattice at deep lithium extraction while the Li1−xNi0.85Co0.15O2 system does not lose oxygen at least for (1−x)>0.3. This difference seems to result in a lower reversible (practical) capacity (140 mA h/g) for LiCoO2 compared to that for LiNi0.85Co0.15O2 (180 Ma h/g). The loss of significant amount of oxygen leads to a sliding of oxide layers and the formation of a major P3 and a minor O1 phase for the end member CoO2−δ with δ=0.33. In contrast, Ni0.85Co0.15O2−δ with a small amount of δ=0.1 maintains the initial O3 layer structure.  相似文献   

9.
Magnetic properties were measured on the cubic perovskite systems SrCoO3?δ, (La1?xSrx)CoO3 (0.5 ≦ x ≦ 1.0), and Sr(Co1?xMnx)O3 (0 ≦ x ≦ 1.0). It is found that S2+ and La3+ ions strongly affect the spin state of the Co2+ ion and that the Mn4+ ion located at the octahedral site affects the spin state of Co4+ ion. The magnetic properties (Tc, Tθ, and σ) are explained by the magnetic interaction Co3+OCo3+, Co3+OCo4+, Co4+OCo4+, Mn4+OMn4+, and Mn4+OCo4+ in these systems.  相似文献   

10.
The influence of the chemical composition and conditions of heat treatment of MnFe x Co2?x O4 system on its phase composition and catalytic properties in CO oxidation was studied. The formation of substitutional solid solutions of spinel structure was established. The optimum chemical composition of the catalyst, ensuring complete CO conversion at 190°C, was determined.  相似文献   

11.
采用共沉淀法制备碱土金属掺杂的钴基尖晶石型复合金属氧化物M_xCo_(3-x)O_4(M=Mg、Ca、Sr、Ba;x=0、0.1、0.3、0.5、0.7、0.9)催化剂,使用XRD、SEM、氮吸附、H_2-TPR、O_2-TPD-M S和XPS等技术对催化剂进行表征,并在固定床微型反应器中评价了M_xCo_(3-x)O_4催化剂催化分解N_2O的活性,研究了碱土金属掺杂对其催化性能的影响。结果表明,碱土金属掺杂后,M_(x )Co_(3-x)O_4催化剂颗粒粒径减小,比表面积增大,表面吸附氧和Co~(2+)数量增加,氧化还原性能增强;在反应气组成为0.68%N_2O,3%O_2,Ar为平衡气的条件下,碱土金属锶掺杂、掺杂量x为0.7时,Sr_(0.7)Co_(2.3)O_4的N_2O分解催化活性最高,N_2O转化率为10%和95%时所需的温度分别为312和451℃。  相似文献   

12.
Paracrystalline array of defect clusters ca. five times the lattice spacing of the average Co3−δO4 spinel structure occurred more or less in a relaxed manner when the sintered Co1−xO polycrystals were air-quenched below the Co1−xO/Co3−δO4 transition temperature to activate oxy-precipitation of cube-like Co3−δO4 at dislocations. The same paracrystalline spacing was obtained for Co3−δO4 when formed via oxidizing/sintering the Co1−xO powders at 800°C in air, suggesting a nearly constant δ value for Co3−δO4 in the T-PO2 conditions encountered. The extra cobalt vacancies and Co3+ interstitials, as a result of δ value, may form additional 4:1-derived defect clusters for further paracrystalline distribution in the spinel lattice. The nanosize defect clusters self-assembled by columbic interactions and lattice relaxation in ionic crystal may have potential applications as step-wise sensor of oxygen partial pressure at high temperatures.  相似文献   

13.
Solid-state synthesis of Na0.71Co1−xRuxO2 compositions shows that ruthenium can be substituted for cobalt in the hexagonal Na0.71CoO2 phase up to x=0.5. The cell expands continuously with increasing ruthenium content. All mixed Co-Ru phases show a Curie-Weiss behaviour with no evidence of magnetic ordering down to 2 K. Unlike the parent phase Na0.71CoO2, ruthenium-substituted phases are all semiconducting. They exhibit high thermoelectric power, with a maximum of 165 μV/K at 300 K for x=0.3. The Curie constant C and Seebeck coefficient S show a non-monotonic evolution as a function of ruthenium content, demonstrating a remarkable interplay between magnetic properties and thermoelectricity. The presence of ruthenium has a detrimental effect on water intercalation and superconductivity in this system. Applying to Ru-substituted phases the oxidative intercalation of water known to lead to superconductivity in the NaxCoO2 system yields a 2-water layer hydrate only for x=0.1, and this phase is not superconducting down to 2 K.  相似文献   

14.
Cobalt oxide nanoparticles (NPs) supported on porous carbon (CoOx@CN) were fabricated by one-pot method and the hybrids could efficiently and selectively hydrogenate phenol to cyclohexanol with a high yield of 98%.  相似文献   

15.
Surface lattice oxygen in transition‐metal oxides plays a vital role in catalytic processes. Mastering activation of surface lattice oxygen and identifying the activation mechanism are crucial for the development and design of advanced catalysts. A strategy is now developed to create a spinel Co3O4 /perovskite La0.3Sr0.7CoO3 interface by in situ reconstruction of the surface Sr enrichment region in perovskite LSC to activate surface lattice oxygen. XAS and XPS confirm that the regulated chemical interface optimizes the hybridized orbital between Co 3d and O 2p and triggers more electrons in oxygen site of LSC transferred into lattice of Co3O4 , leading to more inactive O2? transformed into active O2?x. Furthermore, the activated Co3O4/LSC exhibits the best catalytic activities for CO oxidation, oxygen evolution, and oxygen reduction. This work would provide a fundamental understanding to explain the activation mechanism of surface oxygen sites.  相似文献   

16.
The forming of surface species during the adsorption of carbon monoxide (CO) and CO/O2 on a CeO2/Co3O4 catalyst was investigated by in situ Fourier transform infrared (FT-IR) spectroscopy and temperature programmed desorption-mass spectroscopy (TPD-MS). When CO was adsorbed on the CeO2/Co3O4 catalyst, two types of surface species were distinguishable at room temperature: carbonate and bicarbonate. Surface carbonate was adsorbed on the cerium and cobalt, while the surface bicarbonate absorbed on the CeO2/Co3O4 catalyst at 1611, 1391, 1216 and 830 cm−1. Furthermore, the TPD-MS profiles revealed that the CeO2/Co3O4 catalyst showed a greater amount of CO2 than CO at 373 K. The CO desorption from the CeO2/Co3O4 catalyst with increasing temperature showed that the order of thermal stability was surface bicarbonate < surface carbonate < interface carbonate species. Interestingly, the residual carbonate species could remain on the interface up to 473 K. The results revealed that surface bicarbonate could promote the conversion of CO into CO2 for CO oxidation below 50 K.  相似文献   

17.
Two types of catalysts with the same palladium loading, palladium-substituted perovskite La0.95Ce0.05Co0.95Pd0.05O3 and perovskite-supported palladium catalyst Pd/La0.95Ce0.05CoO3 were prepared by the combustion and impregnation method, respectively. The catalyst structure was characterized by X-ray diffraction (XRD), BET measurements, temperature-programmed reduction (TPR) and the methane oxidation activity of the catalysts were investigated in detail. It was found that the activity performance of Pd/La0.95Ce0.05CoO3 was higher than that of La0.95Ce0.05Co0.95Pd0.05O3, and this was owing to the ease of reduction of palladium in the former.  相似文献   

18.
The compounds BaxLn1?xCoO3 (Ln = La, Nd, Sm and Dy) were prepared by ceramic technique. They were characterised for oxygen non-stoichiometry using isothermal DTA under varying oxygen partial pressure and TG in air. Isothermal DTA was also employed to study the catalytic activity of the compounds towards CO oxidation. For a given compound, the oxygen deficiency increases with increasing temperature and decreasing oxygen partial pressure. For a given BaxLn1?xCoO3 series, in general barium-rich compounds were more oxygen deficient. Isothermal DTA study of CO oxidation over BaxLa1?xCoO3 compounds at 600 K suggested that the carbon monoxide takes up lattice-labile oxygen from the sample and is oxidised to CO2, the percent CO conversion being higher for barium-rich samples.  相似文献   

19.
High‐temperature flame spray pyrolysis is employed for finding highly efficient nanomaterials for use in lithium‐ion batteries. CoOx‐FeOx nanopowders with various compositions are prepared by one‐pot high‐temperature flame spray pyrolysis. The Co and Fe components are uniformly distributed over the CoOx‐FeOx composite powders, irrespective of the Co/Fe mole ratio. The Co‐rich CoOx‐FeOx composite powders with Co/Fe mole ratios of 3:1 and 2:1 have mixed crystal structures with CoFe2O4 and Co3O4 phases. However, Co‐substituted magnetite composite powders prepared from spray solutions with Co and Fe components in mole ratios of 1:3, 1:2, and 1:1 have a single phase. Multicomponent CoOx‐FeOx powders with a Co/Fe mole ratio of 2:1 and a mixed crystal structure with Co3O4 and CoFe2O4 phases show high initial capacities and good cycling performance. The stable reversible discharge capacities of the composite powders with a Co/Fe mole ratio of 2:1 decrease from 1165 to 820 mA h g?1 as the current density is increased from 500 to 5000 mA g?1; however, the discharge capacity again increases to 1310 mA h g?1 as the current density is restored to 500 mA g?1.  相似文献   

20.
In this work, various Co3O4-ZSM-5 catalysts were prepared by the microwave hydrothermal method (MH-Co3O4@ZSM-5), dynamic hydrothermal method (DH-Co3O4@ZSM-5), and conventional hydrothermal method (CH-Co3O4/ZSM-5). Their catalytic oxidation of dichloromethane (DCM) was analyzed. Detailed characterizations such as X-ray diffractometer (XRD), scanning microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), H2 temperature-programmed reduction (H2-TPR), temperature-programmed desorption of O2 (O2-TPD), temperature-programmed desorption of NH3 (NH3-TPD), diffuse reflectance infrared Fourier-transform spectra with NH3 molecules (NH3-DRIFT), and temperature-programmed surface reaction (TPSR) were performed. Results showed that with the assistance of microwave, MH-Co3O4@ZSM-5 formed a uniform core-shell structure, while the other two samples did not. MH-Co3O4@ZSM-5 possessed rich surface adsorbed oxygen species, higher ratio of Co3+/Co2+, strong acidity, high reducibility, and oxygen mobility among the three Co3O4-ZSM-5 catalysts, which was beneficial for the improvement of DCM oxidation. In the oxidation of dichloromethane, MH-Co3O4@ZSM-5 presented the best activity and mineralization, which was consistent with the characterizations results. Meanwhile, according to the TPSR test, HCl or Cl2 removal from the catalyst surface was also promoted in MH-Co3O4@ZSM-5 by their abundant Brønsted acid sites and the promotion of Deacon reaction by Co3O4 or the synergistic effect of Co3O4 and ZSM-5. According to the results of in situ DRIFT studies, a possible reaction pathway of DCM oxidation was proposed over the MH-Co3O4@ZSM-5 catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号