首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The steam reforming of dimethyl ether (DME) (SR) to a hydrogen-rich gas over a mechanical mixture of WOx/ZrO2 (the DME hydration catalyst) and CuZnAlOx (the methanol SR catalyst) was studied. The mechanically mixed catalyst was shown to provide almost complete conversion of DME to the hydrogen-rich gas containing <0.5 vol.% of CO at 300°C, atmospheric pressure, gas hourly space velocity (GHSV) of 10000 h−1 and molar ratio H2O/DME = 3. The hydrogen production rate in DME SR was found to reach 180–250 mmol H2/(gcat·h) at 250–300°C.  相似文献   

2.
SiO2改性的Cu-ZnO/HZSM-5催化剂及合成二甲醚性能   总被引:10,自引:2,他引:10  
以廉价的硅酸钠为硅源,碳酸钠为沉淀剂,采用共沉淀沉积法制备了SiO2改性的Cu-ZnO/ HZSM-5催化剂,用XRD、SEM、H2-TPR、XPS等手段进行了表征,考察了对CO2加氢合成二甲醚的催化活性。结果表明,SiO2促进了催化剂前驱体的分散,延缓了焙烧后催化剂晶粒的长大和颗粒的团聚。SiO2改性的同时影响了CuO的分布状态及还原过程。1.0%SiO2改性的Cu-ZnO/HZSM-5催化剂,用于CO2加氢合成二甲醚,CO2转化率和二甲醚的收率达28.53%和16.34%,与未经改性的Cu-ZnO/ HZSM-5相比,CO2转化率和二甲醚收率分别提高了20%和34%;继续增大SiO2用量,催化剂的活性反而降低。XPS和AES表征表明,1.0%SiO2改性的Cu-ZnO/HZSM-5催化剂中,Cu0是甲醇合成的活性中心,锌以ZnO的形式存在。  相似文献   

3.
In this paper, a new catalyst system Cu‐Mn‐(M)/γ‐Al2O3 was developed for the directly synthesis dimethyl ether (DME) from synthesis gas in a fixed‐bed reactor. The catalysts with different n (Cu) : n (Mn) ratios, several promoter M (M is one of Zn, Cr, W, Mo, Fe, Co or Ni) were prepared and tested. The results showed the catalysts have a high conversion of CO and a high DME selectivity. The DME yield in tail gas reached 46.0% (at 63.27% conversion of CO) at 2.0 MPa, 275°C, 1500 h?1 with the Cu2Mn4Zn/γ‐Al2O3 catalyst.  相似文献   

4.
The effect of the microstructure of titanium dioxide on the structure, thermal stability, and catalytic properties of supported CuO/TiO2 and CuO/(CeO2-TiO2) catalysts in CO oxidation was studied. The formation of a nanocrystalline structure was found in the CuO/TiO2 catalysts calcined at 500°C. This nanocrystalline structure consisted of aggregated fine anatase particles about 10 nm in size and interblock boundaries between them, in which Cu2+ ions were stabilized. Heat treatment of this catalyst at 700°C led to a change in its microstructure with the formation of fine CuO particles 2.5–3 nm in size, which were strongly bound to the surface of TiO2 (anatase) with a regular well-ordered crystal structure. In the CuO/(CeO2-TiO2) catalysts, the nanocrystalline structure of anatase was thermally more stable than in the CuO/TiO2 catalyst, and it persisted up to 700°C. The study of the catalytic properties of the resulting catalysts showed that the CuO/(CeO2-TiO2) catalysts with the nanocrystalline structure of anatase were characterized by the high-est activity in CO oxidation to CO2.  相似文献   

5.
Dimethyl ether (DME),as a promising alternative to diesel fuel and liquefied petroleum gas,has attracted considerable attention in catalysis domain.The catalytic direct synthesis of DME from syngas is an upand-coming route but remains a challenge.In this work,we firstly prepared a Cu-embedded porous Al2O3bifunctional catalyst (Cu@Al2O3-dp) by filling Cu-1,3,5-benzenetricarboxylate metal–organic framework(Cu-BTC MOF) with Al(OH)3followed by a...  相似文献   

6.
Three series of CeO2/CuO samples were prepared by impregnation method and characterized by XRD, N2adsorption-desorption, temperatureprogrammed reduction(TPR), XPS and TEM techniques. In comparison with the samples prepared with CuO as initial support, the samples with Cu(OH)2as initial support have higher reducibilities and smaller relative TPR peak areas, and also larger specific surface areas at calcination temperatures of 400℃–600℃. As a result, Cu(OH)2is better than CuO as initial support for preferential oxidation of CO in excess H2(CO-PROX). The best catalytic performance was achieved on the sample calcined at 600℃ and with an atomic ratio of Ce/Cu at 40%. XPS analyses indicate that more interface linkages Ce-O-Cu could be formed when it was calcined at 600℃. And the atomic ratio of Ce/Cu at 40%led to a proper reducibility for the sample as illustrated by the TPR measurements.  相似文献   

7.
The catalytic activity of the CoO/CeO2 and CuO/CoO/CeO2 systems in selective CO oxidation in the presence of hydrogen at 20–450°C ([CuO] = 1.0–2.5%, [CoO] = 1.0–7.0%) is reported. The maximum CO conversion (X) decreases in the following order: CuO/CoO/CeO2 (X = 98–99%, T = 140–170°C) > CoO/CeO2 (X = 67–84%, T = 230–240°C) > CeO2 (X = 34%, T = 350°C). TPD, TPR, and EPR experiments have demonstrated that the high activity of CuO/CoO/CeO2 is due to the strong interaction of the supported copper and cobalt oxides with cerium dioxide, which yields Cu-Co-Ce-O clusters on the surface. The carbonyl group in the complexes Coδ+-CO and Cu+-CO is oxidized by oxygen of the Cu-Co-Ce-O clusters at 140–160°C and by oxygen of the Co-Ce-O clusters at 240°C. The decrease in the activity of the catalysts at high temperatures is due to the fact that hydrogen reduces the clusters on which CO oxidation takes place, yielding Co0 and Cu0 particles, which are inactive in CO oxidation. The hydrogenation of CO into methane at high temperatures is due to the appearance of Co0 particles in the catalysts.  相似文献   

8.
The catalytic activity of the CuO/ZrO2, CoO/ZrO2, Fe2O3/ZrO2, and CuO/(CoO, Fe2O3)/ZrO2 systems in the reaction of selective CO oxidation in the presence of hydrogen was studied at 20–450°C over the oxide concentration range of 2.5–10 wt % on the surface of ZrO2. The conversion of CO on the CoO/ZrO2 systems was almost independent of the concentration of CoO: 88 or 90% for 2.5 or 10% CoO, respectively. TPR data allowed us to relate the catalytic activity of CoO/ZrO2 to Co-O-Zr clusters, the amount of which was almost constant over the test range of CoO concentrations. The conversion of CO on 2.5% CuO/ZrO2 was 32% (190°C) or 62–66% on 5–10% CuO/ZrO2 (170°C). According to TPR data, clusters like Cu-O-Zr occurred on the surface of ZrO2, and the amount of these clusters reached a maximum upon supporting 5% CuO. The catalytic properties of 5% CuO/5% CoO/ZrO2 and 5% CoO/5% CuO/ZrO2 samples were identical to those of 5% CuO/ZrO2 samples. It is likely that the formation of active reaction sites upon consecutively supporting the oxides occurred on the same surface sites of ZrO2. In this case, Co and Cu oxides competed for cluster formation, and the copper cation can displace the cobalt cation from the formed clusters. The Fe2O3 samples were inactive; a maximum conversion of 34% (290°C) was observed on 10% Fe2O3/ZrO2. The catalytic properties of CuO/Fe2O3/ZrO2 were also identical to those of CuO/ZrO2, and they depended on the presence of Cu-O-Zr clusters on the surface.  相似文献   

9.
以Beta分子筛为核、Y型分子筛为壳层的多级孔复合分子筛(BFZ)作为甲醇脱水催化剂用于固定床中合成气一步法制备二甲醚,并与纯Y型分子筛进行了比较,研究了二甲醚合成催化反应活性与甲醇脱水催化剂孔道结构和酸性之间的关系.结果表明,复合分子筛HBFZ具有中等强度的酸性和中孔孔道结构,有利于提高合成气制备二甲醚的催化反应活性.二甲醚直接合成催化剂由工业CuO/ZnO/Al2O3催化剂(CZA)与分子筛(HBFZ、HY)采用机械混合方法制备;催化评价结果显示,CZA/HBFZ比CZA/HY具有更优的催化活性和稳定性.在250 ℃, 5.0 MPa 和 1 500 h-1的反应条件下,CZA/HBFZ催化剂上CO的转化率和DME的选择性分别达到94.2%和67.9%.  相似文献   

10.
The oxidation of CO with oxygen over (0.25–6.4)% CuO/CeO2 catalysts in excess H2 is studied. CO conversion increases and the temperature range of the reaction decreases by 100 K as the CuO content is raised. The maximal CO conversion, 98.5%, is achieved on 6.4% CuO/CeO2 at 150°C. At T > 150°C, the CO conversion decreases as a result of the deactivation of part of the active sites because of the dissociative adsorption of hydrogen. CO is efficiently adsorbed on the oxidized catalyst to form CO-Cu+ carbonyls on Cu2O clusters and is oxidized by the oxygen of these clusters, whereas it is neither adsorbed nor oxidized on Cu0 of the reduced catalysts. The activity of the catalysts is recovered after the dissociative adsorption of O2 on Cu0 at T ~ 150°C. The activation energies of CO, CO2, and H2O desorption are estimated, and the activation energy of CO adsorption yielding CO-Cu+ carbonyls is calculated in the framework of the Langmuir-Hinshelwood model.  相似文献   

11.
The mass spectrum of Mn(CO)5Cl has been studied at 70 eV and at varying inlet temperatures of 20–250°C. Like the heavier metal carbonyl derivatives, Mn(CO)5Cl exhibits peaks due to carbido fragments. The spectrum run at 100°C shows the characteristic pattern of Mn2(CO)10 which originates from the formation and recombination of the Mn(CO)5 radical. The spectral pattern changes further at an elevated temperature (250°C) showing the formation of Mn2(CO)8Cl2. The effect of pyrolysis has been discussed.  相似文献   

12.
The catalytic properties of CuO supported on ceria or ceria-zirconia mixed oxides have been investigated in the preferential oxidation of CO in H2-rich gases. CuO/CeO2 shows very high activity towards the oxidation of CO with a light-off temperature of about 70°C. This catalyst is very selective for the oxidation of CO rather than of H2 in the low temperature region (70–120°C), while at higher temperatures, the oxidation of hydrogen begins, causing of a maximum of CO conversion to arise with increasing temperature. Published in Russian in Kinetika i Kataliz, 2006, Vol. 47, No. 5, pp. 779–787. This article was submitted by the authors in English.  相似文献   

13.
The dependence of the activity of СuO/ZrO2 catalysts in the CO oxidation reaction with oxygen in the presence of an excess of hydrogen and adsorption of СО over them on the CuO content (0.5 to 15%) and the structure of the support ZrO2, monoclinic (М), tetragonal (Т), or mixed (М + Т) has been studied. It has been found that the activity of CuO/ZrO2 is associated with the adsorption capacity of the samples for СО at 20°С. Thus, 5%CuO/ZrO2(Т + М) and 5% CuO/ZrO2(Т) samples, which exhibit the maximum activity (the СО conversion over them is 80–85% at 160°С), also possess a high chemisorption capacity towards CO (~2.2 × 1020 molecules/g). At the same time, CuO/ZrO2(М) samples with the CuO contents of 1 and 5% do not chemisorb СО and are inactive in the reaction at 160°С. The СО conversion over them does not exceed 32–36% at 250°С. On the basis of the data obtained by X-ray phase analysis, temperature-programmed reduction with Н2, temperature-programmed СО desorption, and electron paramagnetic resonance, a conclusion has been made that at low temperatures СО oxidation proceeds over CunOm clusters that are located on ZrO2(Т) crystallites. With the increase in the copper oxide content from 0.5 to 5%, the activity of the clusters increases, while the reaction temperature decreases. CuOm oxo complexes and particles of the СuO phase do not exhibit catalytic activity. The reasons for the low activity of the CuO/ZrO2(М) samples with the CuO contents of 1 and 5% in the СО oxidation and adsorption processes are discussed. The mechanism of the low-temperature СО oxidation with oxygen in an excess of hydrogen over a 5% CuO/ZrO2(Т + М) catalyst is considered.  相似文献   

14.
Catalytic reduction of NO2 with CO and/or propylene in the presence of NO and excess oxygen, a model mixture for flue gas, was studied over a series of CuO‐CeO2/SiO2 catalysts between 120–260 °C. The effect of HCl, an impurity in flue gas, on the activity of the catalysts was evaluated. It was found that a binary oxide catalyst, 2% CuO‐8% CeO2/SiO2, was active for the reduction of NO2 by CO and/or propylene. CO was effective for selective reduction of NO2 in the presence of NO and O2 in a temperature window between 160–200 °C while propylene was effective at temperature higher than 200 °C. In the presence of HCl, the activity of the catalyst for reduction of NO2 with CO was irreversibly deactivated. However, the activity for reduction of NO2 with propylene was not influenced by HCl.  相似文献   

15.
采用并流共沉淀法在不同焙烧温度下制备K改性Ag-Fe/ZnO-ZrO2催化剂,考察不同焙烧温度对催化剂CO加氢合成低碳混合醇醚反应性能的影响。通过N2物理吸附(N2-adsorption)、X射线衍射(XRD)、氢气程序升温还原(H2-TPR)、一氧化碳程序升温脱附(CO-TPD)等手段对催化剂进行表征。结果表明,250 ℃焙烧的催化剂,由于焙烧温度较低,表面尚未形成足够多的活性位,未能达到最佳的催化性能;300 ℃焙烧的催化剂,其CO转化率最高、醇醚选择性较高,醇醚时空产率达到最大值。随着焙烧温度进一步升高,CO转化率逐渐降低,醇选择性先降低后增大,二甲醚(DME)选择性逐渐增大,醇醚时空产率逐渐降低。催化剂性能主要与其比表面积、还原性能、所含银铁复合物分散度及CO吸脱附性能有关,即比表面积较大、易于被还原、银铁复合物分散度较高以及较多的CO吸脱附活性位,有利于催化剂CO加氢转化。催化剂表面活性位对CO的非解离吸附强度降低,有利于醇醚产物的生成;而对CO的解离吸附强度增强,则不利于烃类产物的生成。  相似文献   

16.
金属组分负载量对Cu-Mn-Zn/Y直接合成二甲醚催化剂的影响   总被引:3,自引:3,他引:3  
通过对不同金属负载量Cu-Mn-Zn/Y催化剂的研究,结果发现,金属组分的负载量为30mmol时,CO的转化率和二甲醚的选择性分别可达65.6%和67.0%。金属组分负载量20mmol~30mmol时,催化剂中各金属组分均呈高分散状态,增加金属组分负载量主要是增加了催化剂吸附CO和H2活性中心的数目,使得催化剂对CO的转化能力增加。当金属组分负载量达到35mmol时,催化剂的微观结构发生了改变,作为主要活性组分的铜也发生了聚集,造成催化剂对CO和H2吸附能力降低;由于作为酸性组分的分子筛含量相对减少和大量金属组分对酸中心的覆盖作用,导致催化剂酸性降低,使得催化剂对CO的转化率和对二甲醚的选择性均降低。  相似文献   

17.
CO methanation on Ni/CeO2 has recently received increasing attention. However, the low-temperature activity and carbon resistance of Ni/CeO2 still need to be improved. In this study, plasma decomposition of nickel nitrate was performed at ca. 150°C and atmospheric pressure. This was followed by hydrogen reduction at 500 °C in the absence of plasma, and a highly dispersed Ni/CeO2 catalyst was obtained with improved CO adsorption and enhanced metal-support interaction. The plasma-decomposed catalyst showed significantly improved low-temperature activity with high methane selectivity (up to 100%) and enhanced carbon resistance for CO methanation. For example, at 250°C, the plasma-decomposed catalyst showed a CO conversion of 96.8% with high methane selectivity (almost 100%), whereas the CO conversion was only 14.7% for a thermally decomposed catalyst.  相似文献   

18.
A new ecologically clean method for the solid-phase synthesis of oxide copper–ceria catalysts with the use of the mechanochemical activation of a mixture of Cu powder (8 wt %) with CeO2 was developed. It was established that metallic copper was oxidized by oxygen from CeO2 in the course of mechanochemical activation. The intensity of a signal due to metallic Cu in the X-ray diffraction analysis spectra decreased with the duration of mechanochemical activation. The Cu1+, Cu2+, and Ce3+ ions were detected on the sample surface by X-ray photoelectron spectroscopy. The application of temperature-programmed reduction (TPR) made it possible to detect two active oxygen species in the reaction of CO oxidation in the regions of 190 and 210–220°C by a TPR-H2 method and in the regions of 150 and 180–190°C by a TPR-CO method. It is likely that the former species occurred in the catalytically active nanocomposite surface structures containing Cu–O–Ce bonds, whereas the latter occurred in the finely dispersed particles of CuO on the surface of CeO2. The maximum conversion of CO (98%, 165°C) reached by the mechanochemical activation of the sample for 60 min was almost the same as conversion on a supported CuO/CeO2 catalyst.  相似文献   

19.
Synthesis and Crystal Structure of [Li(DME)2I] . LiI can be dissolved at 50°C in toluene/DME (2:1). At - 20°C [Li(DME)2I] ( 1 ) was isolated in 75% yield. 1 was characterized by NMR techniques as well as an X-Ray structure determination. 1 crystallizes in the space group C2/c with a = 1 356.9(2), b = 813.2(1), c = 1 259.1(2) pm, and β = 99.74(1)°.  相似文献   

20.
Activated carbon (AC) supported silver catalysts were prepared by incipient wetness impregnation method and their catalytic performance for CO preferential oxidation (PROX) in excess H2 was evaluated. Ag/AC catalysts, after reduction in H2 at low temperatures (≤200 °C) following heat treatment in He at 200 °C (He200H200), exhibited the best catalytic properties. Temperature-programmed desorption (TPD), X-ray diffraction (XRD) and temperature-programmed reduction (TPR) results indicated that silver oxides were produced during heat treatment in He at 200 °C which were reduced to metal silver nanoparticles in H2 at low temperatures (≤200 °C), simultaneously generating the adsorbed water/OH. CO conversion was enhanced 40% after water treatment following heat treatment in He at 600 °C. These results imply that the metal silver nanoparticles are the active species and the adsorbed water/OH has noticeable promotion effects on CO oxidation. However, the promotion effect is still limited compared to gold catalysts under the similar conditions, which may be the reason of low selectivity to CO oxidation in PROX over silver catalysts. The reported Ag/AC-S-He catalyst after He200H200 treatment displayed similar PROX of CO reaction properties to Ag/SiO2. This means that Ag/AC catalyst is also an efficient low-temperature CO oxidation catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号