首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Systematic experimental and theoretical studies of the propagation of shock and detonation waves in cylindrical tubes and planar channels with two U-shaped bends of limiting curvature were performed. It was demonstrated that U-shaped bends substantially facilitate detonation initiation in gases. The minimum shock wave velocity required to initiate the detonation of a stoichiometric propane-air mixture under normal conditions in a near-critical diameter tube with two U-shaped bends of limiting curvature was found to be ~800 m/s.  相似文献   

2.
Two-dimensional channel flows with shock waves resulting from the detonation of a combustible gas mixture are considered. Conditions for detonation and the parameters of the shock waves are determined. The feasibility of reducing the shock wave intensity and loads on the structure by mounting a set of mesh screens in the channel is investigated. The numerical computation of detonation initiation in an air-hydrogen mixture and subsequent passage of shock waves through the mesh screens is carried out. Basic quantitative characteristics of shock wave reduction depending on the mesh screen penetrability and mutual arrangement of variously penetrable screens are obtained.  相似文献   

3.
于明  刘全 《物理学报》2016,65(2):24702-024702
凝聚炸药爆轰在边界高声速材料约束下传播时,爆轰波会在约束材料界面上产生复杂的折射现象.本文针对凝聚炸药爆轰波在高声速材料界面上的折射现象展开理论和数值模拟分析.首先通过建立在爆轰ZND模型上的改进爆轰波极曲线理论给出爆轰波折射类型,然后发展一种求解爆轰反应流动方程的基于特征理论的二阶单元中心型Lagrange计算方法来数值模拟典型的爆轰波折射过程.从改进爆轰波极曲线理论和二阶Lagrange方法数值模拟给出的结果看出,凝聚炸药爆轰波在高声速材料界面上的折射类型有四种:反射冲击波的正规折射、带束缚前驱波的非正规折射、带双Mach反射的非正规折射、带λ波结构的非正规折射.  相似文献   

4.
The reflection of a CJ detonation from a perforated plate is used to generate high speed deflagrations downstream in order to investigate the critical conditions that lead to the onset of detonation. Different perforated plates were used to control the turbulence in the downstream deflagration waves. Streak Schlieren photography, ionization probes and pressure transducers are used to monitor the flow field and the transition to detonation. Stoichiometric mixtures of acetylene–oxygen and propane–oxygen were tested at low initial pressures. In some cases, acetylene–oxygen was diluted with 80% argon in order to render the mixture more “stable” (i.e., more regular detonation cell structure). The results show that prior to successful detonation initiation, a deflagration is formed that propagates at about half the CJ detonation velocity of the mixture. This “critical” deflagration (which propagates at a relatively constant velocity for a certain duration prior to the onset of detonation) is comprised of a leading shock wave followed by an extended turbulent reaction zone. The critical deflagration speed is not dependent on the turbulence characteristics of the perforated plate but rather on the energetics of the mixture like a CJ detonation (i.e., the deflagration front is driven by the expansion of the combustion products). Hence, the critical deflagration is identified as a CJ deflagration. The high intensity turbulence that is required to sustain its propagation is maintained via chemical instabilities in the reaction zone due to the coupling of pressure fluctuations with the energy release. Therefore, in “unstable” mixtures, critical deflagrations can be supported for long durations, whereas in “stable” mixtures, deflagrations decay as the initial plate generated turbulence decays. The eventual onset of detonation is postulated to be a result of the amplification of pressure waves (i.e., turbulence) that leads to the formation of local explosion centers via the SWACER mechanism during the pre-detonation period.  相似文献   

5.
This paper discusses the Nonequilibrium Zeldovich-von Neumann-Doring (NEZND) theory of self-sustaining detonation waves and the Ignition and Growth reactive flow model of shock initiation and detonation wave propagation in solid explosives. The NEZND theory identified the nonequilibrium excitation processes that precede and follow the exothermic decomposition of a large high explosive molecule into several small reaction product molecules. The thermal energy deposited by the leading shock wave must be distributed to the vibrational modes of the explosive molecule before chemical reactions can occur. The induction time for the onset of the initial endothermic reactions can be calculated using high pressure-high temperature transition state theory. Since the chemical energy is released well behind the leading shock front of a detonation wave, a physical mechanism is required for this chemical energy to reinforce the leading shock front and maintain its overall constant velocity. This mechanism is the amplification of pressure wavelets in the reaction zone by the process of de-excitation of the initially highly vibrationally excited reaction product molecules. This process leads to the development of the three-dimensional structure of detonation waves observed for all explosives. For practical predictions of shock initiation and detonation in hydrodynamic codes, phenomenological reactive flow models have been developed. The Ignition and Growth reactive flow model of shock initiation and detonation in solid explosives has been very successful in describing the overall flow measured by embedded gauges and laser interferometry. This reactive flow model uses pressure and compression dependent reaction rates, because time-resolved experimental temperature data is not yet available. Since all chemical reaction rates are ultimately controlled by temperature, the next generation of reactive flow models will use temperature dependent reaction rates. Progress on a statistical hot spot ignition and growth reactive flow model with multistep Arrhenius chemical reaction pathways is discussed. The text was submitted by the authors in English.  相似文献   

6.
Shock wave and detonation propagation through U-bend tubes   总被引:4,自引:0,他引:4  
The objective of the research outlined in this paper is to provide experimental and computational data on initiation, propagation, and stability of gaseous fuel–air detonations in tubes with U-bends implying their use for design optimization of pulse detonation engines (PDEs). The experimental results with the U-bends of two curvatures indicate that, on the one hand, the U-bend of the tube promotes the shock-induced detonation initiation. On the other hand, the detonation wave propagating through the U-bend is subjected to complete decay or temporary attenuation followed by the complete recovery in the straight tube section downstream from the U-bend. Numerical simulation of the process reveals some salient features of transient phenomena in U-tubes.  相似文献   

7.
气相爆轰波在分叉管中传播现象的数值研究   总被引:1,自引:0,他引:1  
数值研究气相爆轰波在分叉管中的传播现象.用二阶附加半隐龙格-库塔法和5阶WENO格式求解二维欧拉方程,用基元反应描述爆轰化学反应过程,得到了密度、压力、温度、典型组元质量分数场及数值胞格结构和爆轰波平均速度.结果表明:气相爆轰波在分叉管中传播,分叉口左尖点的稀疏波导致诱导激波后压力、温度急剧下降,诱导激波和化学反应区分离,爆轰波衰减为爆燃波(即爆轰熄灭).分离后的诱导激波在垂直支管右壁面反射,并导致二次起爆.畸变的诱导激波在水平和垂直支管中均发生马赫反射.分叉口上游均匀胞格区和分叉口附近大胞格区的边界不是直线,其起点通常位于分叉口左尖点上游或恰在左尖点.水平支管中马赫反射三波点迹线始于右尖点下游.分叉口左尖点附近的流场中出现了复杂的旋涡结构、未反应区及激波与旋涡作用.旋涡加速了未反应区的化学反应速率.反射激波与旋涡作用并使旋涡破碎.反射激波与未反应区作用,加速其反应消耗,并形成一个内嵌的射流.数值计算得到的波系演变和胞格结构与实验定性一致.  相似文献   

8.
考虑几何结构参数对激波聚焦触发爆轰波的复杂影响,对H2/Air预混气的环形射流激波聚焦起爆现象开展了数值模拟研究,详细分析了不同隔板深度条件下的激波聚焦过程、流场演化特征以及爆轰波参数变化规律。研究结果表明,凹腔内激波聚焦诱导的局部爆炸以及隔板前缘处射流形成"卷吸涡"是引起爆轰波触发的两个重要机制,而隔板深度是影响环形射流激波聚焦起爆性能的关键因素。随着隔板深度的增加,凹腔内激波聚焦的强度逐步增强,回传的能量损失有所减小,进而导致爆燃转爆轰的距离与时间显著缩短。此外,当隔板深度由1 mm逐渐增加至3 mm时,爆轰波自持传播稳定性呈现出先降低后升高的变化趋势,产生这一现象的主要原因是爆轰波强度与三波点运动的相互作用。  相似文献   

9.
This work reports the experimental characterization of detonation initiation modes in a confined chamber in respect to the different types of reacting waves generated in various small-diameter ignition tubes. Depending on the length of the tube and mixtures composition, four types of reacting waves can be generated and utilized to initiate detonation in the main chamber, namely the over-driven detonation ignition wave, CJ detonation ignition wave, high-speed deflagration ignition wave and deflagration ignition wave. Based on the mechanisms of detonation initiation in the main chamber, four initiation modes can be observed: the direct initiation, the local explosion initiation, and the fast and slow deflagration-to-detonation transition (DDT) initiation. By comparing the detonation initiation positions and flame-tip velocities, the first two modes show appreciably shorter initiation distances compared to the DDT modes. The over-driven detonation ignition wave is shown to yield a high probability of direct initiation, while contrary to expectation, the high-speed deflagration ignition wave exhibits superior initiation performance compared to the CJ detonation ignition wave. It is illustrated that the energy decay through diffraction and the effect of precursor shock wave reflection on the wall of the rectangular chamber are viable factors responsible for this observation. The deflagration ignition wave is also shown to be able to rapidly initiate the detonation near the inlet of the chamber, albeit with a lower success rate.  相似文献   

10.
空气中激光支持爆轰波实验及理论分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究激光击穿空气产生的等离子体爆轰波形成机制和传播规律,利用高能量CO2激光器产生强激光,进行了空气中产生激光支持等离子体爆轰波实验。实验中:设置了诱导靶板,用于诱发和定位空气中的激光支持爆轰波;以激光器升压过程球隙放电产生的光信号作为触发源,触发高时间分辨率(纳秒级)的高速相机,记录了激光支持爆轰波的成长和传播全过程。分析了激光支持爆轰波的形成机理和传播规律。采用C-J爆轰理论,计算了激光支持爆轰波的压力和温度。研究结果表明:激光支持等离子体爆轰波形成初期,等离子体爆轰波发光体为球形;随着时间增加,等离子体爆轰波发光体的形状类似流星,且头部为等离子体前沿吸收层,亮度较高,而尾部等离子体温度较低,亮度较弱。等离子体爆轰波高速向激光源的方向移动,爆轰波速度高达18 km/s,温度约为107K。随着激光强度的减弱,爆轰波速度迅速按指数规律衰减,当爆轰波吸收的激光能量不能有效支持爆轰波传播时,爆轰波转变为冲击波。  相似文献   

11.
 针对非定常的气相强爆轰过程,建立了气相爆轰的理论计算模型,结合C-J理论和多方气体物态方程,对乙炔-氧气混合气体的强爆轰参数进行了理论估算,并在激波管中开展了化学计量比的乙炔-氧气混合气体的强爆轰实验。对比研究表明:爆速的理论估算值与实验值符合较好,证实了采用C-J理论估算气相强爆轰参数的可行性,计算数据具有一定的参考价值。  相似文献   

12.
An experimental investigation of the onset of detonation   总被引:2,自引:0,他引:2  
An experimental configuration is devised in the present investigation whereby the condition at the final phase of the deflagration to detonation transition (DDT) process can be generated reproducibly by reflecting a CJ detonation from a perforated plate. The detonation products are transmitted downstream through the plate, generating a turbulent reaction front that mixes with the unburned mixture and that drives a precursor shock ahead of it at a strength of about M = 3. The gasdynamic condition that is generated downstream of the perforated plate closely corresponds to that just prior to the onset of detonation in the DDT process. The turbulence parameters can be controlled by varying the geometry of the perforated plate; thus, the condition leading to the onset of detonation can be experimentally investigated. A one-dimensional theoretical analysis of the steady wave processes was first performed, and the experimental results show good agreement, indicating that the present experimental condition can be theoretically described. Two different detonation tube geometries (one with a square cross-section of 300 mm by 300 mm and the other with a circular cross-section of 150 mm) are used to demonstrate the independence of the tube diameter at the critical condition for DDT. Perforated plates with different hole diameters (d = 8, 15, and 25 mm) were tested, and the hole spacing to hole diameter ratio was maintained at 0.5. Different hydrogen–air mixtures were tested at normal temperature and pressure. For the plate with 8 mm holes, the onset of detonation is never observed. For the plate with 15 mm holes, successful initiation of a detonation is achieved for 0.8 < < 1.75 in both detonation tubes. For the plate with 25 mm holes, detonation initiation is observed for 0.7 < < 2.1 in the square detonation tube and for 0.8 < < 1.6 in the smaller circular detonation tube.  相似文献   

13.
基于竖直爆轰管和径向Hele-Shaw Cell,设计并搭建了一套准二维柱面爆炸波加载装置,可以实现对Hele-Shaw Cell内部材料界面的径向冲击加载.竖直爆轰管内部的预混气体在底部点燃后,形成向上传播的冲击波,冲击波冲破爆轰管开口与Hele-Shaw Cell底板开孔之间的隔膜后,被Hele-Shaw Cell...  相似文献   

14.
The unsteady, reactive Navier-Stokes equations with a detailed chemical mechanism of 11 species and 27 steps were employed to simulate the mixing, flame acceleration and deflagration-to-detonation transition (DDT) triggered by transverse jet obstacles. Results show that multiple transverse jet obstacles ejecting into the chamber can be used to activate DDT. But the occurrence of DDT is tremendously difficult in a non-uniform supersonic mixture so that it required several groups of transverse jets with increasing stagnation pressure. The jets introduce flow turbulence and produce oblique and bow shock waves even in an inhomogeneous supersonic mixture. The DDT is enhanced by multiple explosion points that are generated by the intense shock wave focusing of the leading flame front. It is found that the partial detonation front decouples into shock and flame, which is mainly caused by the fuel deficiency, nevertheless the decoupled shock wave is strong enough to reignite the mixture to detonation conditions. The resulting transverse wave leads to further mixing and burning of the downstream non-equilibrium chemical reaction, resulting in a high combustion temperature and intense flow instabilities. Additionally, the longitudinal and transverse gradients of the non-uniform supersonic mixture induce highly dynamic behaviors with sudden propagation speed increase and detonation front instabilities.  相似文献   

15.
The results from studying the transient processes induced by a shock in porous TATB, obtained using an original and tested method based on employing the soft X-ray component of synchrotron radiation, are presented. The method enables us to determine the parameters of a shock-wave striker, the distribution of velocity and density behind the front of the shock and detonation wave, and the characteristics of flow after a shock wave is reflected from a rigid wall, all in one experiment. Trials with charges 1.8 and 1.9 g/cm3 in density show that modes such as the absence of detonation and initiation in direct and reflected shock waves, are possible depending on the loading conditions.  相似文献   

16.
超声速预混可燃气流的点火与燃烧   总被引:3,自引:0,他引:3  
在激波风洞一激波管组合设备上开展了碳氢燃料超声速预混可燃气流的点火与燃烧实验研究。实验结果表明:利用激波对燃料进行预热,并以高温燃气作为引导火焰,可以有效缩短汽油空气超声速可燃混气的点火延迟时间,使之缩短到 0.2 ms以下。利用纹影照片对超声速燃烧流场结构作出了分析;研究了超声速预混可燃气流的温度以及当量比对超声速燃烧流场结构、点火与火焰传播特性的影响。  相似文献   

17.
The possibility for the application of the method of parametric phase conjugation of ultrasonic waves in measuring the velocity of moving objects and flows is investigated. Results of experimental measurements of the Doppler frequency shift are presented for a low-frequency wave (1 MHz) generated by phase-conjugate waves (10 MHz and 11 MHz) propagating in opposite directions in the presence of a moving scatterer. The super high sensitivity of the phase of the low-frequency wave to variations in the spatial position of the scatterer is used to measure the velocity of the object. The presence of flows in the region of propagation of phase-conjugate waves returned leads to an uncompensated Doppler shift of the phase of the phase-conjugate wave at the primary radiation source. The implementation of this feature of ultrasonic phase conjugation for the detection and measurement of the flow velocities in a liquid is demonstrated experimentally.  相似文献   

18.
The interaction between an incident shock wave and a transverse jet flow for mixing and combustion in a supersonic airstream was investigated experimentally and numerically. NO planar laser induced fluorescence (NO-PLIF) and particle imaging velocimetry (PIV) for non-reactive flows and three-dimensional reactive/non-reactive numerical simulations were conducted to examine the effect of the incident shock wave on the three-dimensional flow structure and mixing mechanism between the airstream and the injected gas downstream of the injection slot. Results of NO-PLIF measurement and numerical simulation showed that, in the case without the incident shock wave, injected gas is seldom seen in the recirculation zone just downstream of the injection slot, while the injected gas with higher concentration is almost uniformly distributed in the recirculation zone when the incident shock wave is introduced downstream of the injection slot. Moreover, it was shown by the numerical simulations that the profiles of the local equivalence ratio is in the combustible range due to the enhanced entrainment of the airstream when the incident shock wave is introduced downstream of the injection slot. A large-scale recirculation in the direction parallel to the wall is generated by the three-dimensional flow effects, which enhances the mixing and extends the residence time in the recirculation zone in the case with incident shock wave downstream of the injection slot, the recirculation flow being confirmed successfully by PIV measurements as well. The results of three-dimensional reactive numerical simulations were in good agreement with the experimental flame-holding characteristics at a lower total temperature, which showed that flame-holding can be attained only when the incident shock wave was introduced downstream of the injection slot, confirming that the formation of three-dimensional and large-scale recirculation flow downstream of the injection slot enlarges the recirculation zone and enhances the mixing to produce the conditions for robust flame-holding.  相似文献   

19.
 针对气相爆轰波成长机制研究,采用压力传感器和高速摄影技术,测试了氢氧混合气体在点火后的火焰波、前驱冲击波以及爆轰波的成长变化过程,计算了冲击波过程参数和气体状态参数,分析了火焰加速机制。实验结果表明,APX-RS型高速摄影系统可用于拍摄气相爆轰波的成长历程;氢氧爆轰波的产生是由于湍流火焰和冲击波的相互正反馈作用,导致反应区内多处发生局部爆炸,爆炸波与冲击波相互耦合,最终成长为定常爆轰波。  相似文献   

20.
The effects of different peak compression stresses (2–5 GPa) on the spallation behaviour of high purity copper cylinder during sweeping detonation were examined by Electron Backscatter Diffraction Microscopy, Doppler Pins System and Optical Microscopy techniques. The velocity history of inner surface and the characteristics of void distributions in spalled copper cylinder were investigated. The results indicated that the spall strength of copper in these experiments was less than that revealed in previous reports concerning plate impact loading. The geometry of cylindrical copper and the obliquity of incident shock during sweeping detonation may be the main reasons. Different loading stresses seemed to be responsible for the characteristics of the resultant damage fields, and the maximum damage degree increased with increasing shock stress. Spall planes in different cross-sections of sample loaded with the same shock stress of 3.29 GPa were found, and the distance from the initiation end has little effect on the maximum damage degree (the maximum damage range from 12 to 14%), which means that the spallation behaviour was stable along the direction parallel to the detonation propagation direction under the same shock stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号