首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sensors highly sensitive to CO gas that are based on Ag-doped SnO2 nanoparticles are shown to be a feasibility. The structure and composition of the respective films versus the SnO2 nanoparticle size are studied. The electrical parameters of the sensor materials are measured. It is shown that exposure of the nanostructured films to carbon monoxide considerably decreases their resistance and shifts the frequency of a maximum in the impedance curves toward lower values. Specific features of the IR reflection spectra in the range of excitation of carbon and oxygen atom vibrations are revealed.  相似文献   

2.
This paper presents the transfer of SnO2 by laser induced forward transfer (LIFT) for gas sensor applications. Different donor substrates of SnO2 with and without triazene polymer (TP) as a dynamic release layer were prepared. Transferring these films under different conditions were evaluated by optical microscopy and functionality. Transfers of sputtered SnO2 films do not lead to satisfactory results and transfers of SnO2 nanoparticles are difficult. Transfers of SnO2 nanoparticles can only be achieved when applying a second laser pulse to the already transferred material, which improves the adhesion resulting in a complete pixel. A new approach of decomposing the transfer material during LIFT transfer was developed. Donor films based on UV absorbing metal complex precursors namely, SnCl2(acac)2 were prepared and transferred using the LIFT technique. Transfer conditions were optimized for the different systems, which were deposited onto sensor-like microstructures. The conductivity of the transferred material at temperatures of about 400 °C are in a range usable for SnO2 gas sensors. First sensing tests were carried out and the transferred material proved to change conductivity when exposed to ethanol, acetone, and methane.  相似文献   

3.
We propose a method for obtaining highly conductive nanosize composite of polyaniline with tin dioxide (SnO2). Synthesis of SnO2 and polycondensation of aniline are combined in a single reactor, which allows one to control the size of SnO2 nanoparticles in the range from 10 to 300 nm and to change their content in the nanocomposite depending on the conditions of synthesis (temperature, pH and concentration of reagents). Morphology, composition, IR spectra, and electroconductivity of the obtained samples and films have been studied.  相似文献   

4.
对于埋嵌在薄膜材料中的纳米颗粒,在其生长过程中总是不可避免地伴随着应变场的产生,而这种应变场的分布能反映纳米颗粒的结构变化,纳米颗粒结构与它的物理性能有重要的关系.研究埋嵌在不同薄膜材料中的纳米颗粒生长过程中的应变场分布对于调控纳米颗粒的物理性能有着重要的意义.本文利用有限元算法分别计算了埋嵌在非晶氧化铝薄膜和非晶二氧化硅薄膜材料中的砷化镓纳米颗粒生长过程中的应变场分布.砷化镓纳米颗粒在以上两薄膜材料生长过程中都受到非均匀偏应变作用.对于埋嵌在氧化铝薄膜中的砷化镓纳米颗粒,其生长过程中,纳米颗粒内部受到的应变大于纳米颗粒表面受到的应变;而对于埋嵌在二氧化硅薄膜中的砷化镓纳米颗粒,纳米颗粒内部受到的应变小于纳米颗粒表面受到的应变.选择砷化镓纳米颗粒生长的薄膜材料可以调控纳米颗粒生长过程中的应变场分布,从而进一步调控纳米颗粒的晶格结构和形貌及其物理性能.  相似文献   

5.
在室温及不同的氧氩比条件下,采用射频磁控溅射Ag层和直流磁控溅射SnO2层,在载玻片衬底上制备出了SnO2/Ag/SnO2多层薄膜.用霍尔效应测试仪、四探针电阻测试仪和紫外-可见-近红外光谱仪等表征了薄膜的电学性质和光学性质.实验结果表明:当氧氩比为1:14时,所制得的薄膜的光电性质优良指数最大,为1.69×10-2 Ω-1;此时,薄膜的电阻率为9.8×10-5 Ω·cm,方电阻为9.68 Ω/sq,在400~800 nm可见光区的平均光学透射率达85%;并且,在氧氩比为1:14时,利用射频磁控溅射Ag层和直流磁控溅射SnO2层在PET柔性衬底上制备出了光电性质优良的柔性透明导电膜,其在可见光区的平均光学透过率达85%以上,电阻率为1.22×10-4 Ωcm,方电阻为12.05 Ω/sq.  相似文献   

6.
This work reports the preparation, characterization and applications of silver nanoparticles synthesized through the chemical reduction of AgNO3 and protected by surface modifier. In order to characterize the formation of nanoparticles and the role of synthesis parameters (time, temperature) several studies were made, such as UV-vis spectroscopy, TEM and AFM. We present the incorporation of Ag nanoparticles in sol-gel obtained matrix, because this technique allows the incorporation of larger concentrations of active optical agents and the obtainment of full-dense films at lower temperature than those possible by other methods. The final goal of this work is the preparation of 80SiO2·20B2O3 films for active optical waveguides doped with Ag nanoparticles and Erbium. We are looking for the reinforcement of the fluorescence intensity due to the effect of the resonant coupling of both optical agents (Er and nanoparticles) to produce optical amplifiers.  相似文献   

7.
The dispersal of CuO catalyst on the surface of the semiconducting SnO2 film is found to be of vital importance for improving the sensitivity and the response speed of a SnO2 gas sensor for H2S gas detection. Ultra-thin CuO islands (8 nm thin and 0.6 mm diameter) prepared by evaporating Cu through a mesh and subsequent oxidation yield a fast response speed and recovery. Ultimately nanoparticles of Cu (average size = 15 nm) prepared by a chemical technique using a reverse micelle method involving the reduction of Cu(NO3)2 by NaBH4 exhibited significant improvement in the gas sensing characteristics of SnO2 films. A fast response speed of ∼14 s and a recovery time of ∼60 s for trace level ∼20 ppm H2S gas detection have been recorded. The sensor operating temperature (130° C) is low and the sensitivity (S = 2.06 × 103) is high. It is found that the spreading over of CuO catalyst in the nanoscale range on the surface of SnO2 allows effective removal of excess adsorbed oxygen from the uncovered SnO2 surface due to spill over of hydrogen dissociated from the H2S-CuO interaction.  相似文献   

8.
This paper presents further insights and observations of the chemical bath deposition (CBD) of ZnS thin films using an aqueous medium involving Zn-salt, ammonium sulfate, aqueous ammonia, and thioure. Results on physical and chemical properties of the grown layers as a function of ammonia concentration are reported. Physical and chemical properties were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDX), and X-ray diffraction (XRD). Rapid growth of nanostructured ZnO films on fluorine-doped SnO2 (FTO) glass substrates was developed. ZnO films crystallized in a wurtzite hexagonal structure and with a very small quantity of Zn(OH)2 and ZnS phases were obtained for the ammonia concentration ranging from 0.75 to 2.0 M. Flower-like and columnar nanostrucured ZnO films were deposited in two ammonia concentration ranges, respectively: one between 0.75 and 1.0 M and the other between 1.4 and 2.0 M. ZnS films were formed with a high ammonia concentration of 3.0 M. The formation mechanisms of ZnO, Zn(OH)2, and ZnS phases were discussed in the CBD process. The developed technique can be used to directly and rapidly grow nanostructured ZnO film photoanodes. Annealed ZnO nanoflower and columnar nanoparticle films on FTO substrates were used as electrodes to fabricate the dye sensitized solar cells (DSSCs). The DSSC based on ZnO-nanoflower film showed an energy conversion efficiency of 0.84%, which is higher compared to that (0.45%) of the cell being constructed using a photoanode of columnar nanoparticle ZnO film. The results have demonstrated the potential applications of CBD nanostructured ZnO films for photovoltaic cells.  相似文献   

9.
Fluorine (F) incorporated polycrystalline SnO2 films have been deposited onto glass substrates by ultrasonic spray pyrolysis technique. To possess information about the electrical properties of all films, their electrical conductivities were investigated depending on the temperature, and their activation and trap energies were analyzed. The crystalline structure, surface properties and elemental analysis of the SnO2 films were examined to determine the effect of the F element. After all investigations, it was concluded that each fluorine incorporation rate has a different and important effect on the physical properties, and SnO2:F (3 at%) films were found to be the most promising sample for energy conversion devices, especially as conducting electrode in solar cells with its improved structural and electrical properties as compared to others.  相似文献   

10.
B. R. Mehta  V. N. Singh 《Pramana》2005,65(5):949-958
The central objective of this study is to investigate (i) size-dependent properties of In2O3 nanoparticles and (ii) the role of metal additives in enhancing the gas sensing response. For this purpose, In2O3 : Ag composite nanoparticle layers having welldefined individual nanoparticle size and composition have been grown by a two step synthesis method. Thermogravimetric analysis, X-ray diffraction and transmission electron microscopy have been used to study the effect of post-synthesis heat treatment on the size and structure of the nanoparticles. A first-time unambiguous observation of sizedependent lowering of transformation temperature has been explained in terms of lower cohesive energy of surface atoms and increase in surface-to-volume ratio with decrease in nanoparticle size. The gas sensing studies of In2O3 as well as the In2O3 : Ag composite nanoparticle layers have been studied as a function of size and composition. In2O3: Ag composite nanoparticle layers with 15% silver show a sensitivity of 436 and response time of 6 s for 1000 ppm of ethanol in air. Ag additives form a p-type Ag2O, which interact with n-type In2O3 to produce an electron-deficient space-charge layer. In the presence of ethanol, interfacial Ag2O reduces to Ag, creating an accumulation layer in In2O3 resulting in increased sensitivity  相似文献   

11.
CdS and ZnS semiconducting colloid nanoparticles coated with the organic shell, containing either SO3 or NH2+ groups, were prepared using the aqueous phase synthesis. The multilayer films of CdS (or ZnS) were deposited onto glass, quartz and silicon substrates using the technique of electrostatic self-assembly. The films produced were characterized with UV-vis spectroscopy, spectroscopic ellipsometry and atomic force microscopy. A substantial blue shift of the main absorption band with respect to the bulk materials was found for both CdS and ZnS films. The Efros equation in the effective mass approximation (EMA) theoretical model allowed the evaluation of the nanoparticle radius of 1.8 nm, which corresponds well to the ellipsometry results. AFM shows the formation of larger aggregates of nanoparticles on solid surfaces.  相似文献   

12.
林涛  万能  韩敏  徐骏  陈坤基 《物理学报》2009,58(8):5821-5825
使用软化学方法在碱性溶液中制备出了颗粒尺寸分布均匀的SnO2纳米颗粒,使用透射电子显微镜(TEM)、X射线衍射(XRD)、光致发光谱(PL)和光吸收谱等方法分析与表征了SnO2纳米颗粒的结构和光学性能.实验中通过表面活性剂的加入来控制纳米颗粒的结晶与凝聚.XRD,TEM的结果表明,原始制备出的SnO2纳米颗粒的平均粒径小于4 nm,为完好的晶体状态.纳米颗粒经过400—1000 ℃退火后晶粒尺寸进一步增大.光吸收谱表明,相对于体材料,纳米颗粒的禁带宽度展宽并随颗粒尺寸增大而红移.光致发光谱测试表明,不同温度下退火的SnO2纳米颗粒在350—750 nm有较强的发光,研究表明这是来源于颗粒表面的氧空位缺陷发光. 关键词: 氧化锡 表面活性剂 纳米颗粒 光致发光  相似文献   

13.
In this paper, we present a novel technique to prepare silver nanoparticle films by controlling the self-assembly of nanoparticles at an air-liquid interface. In an ethanol-water phase, silver nanoparticles were prepared by reduction of AgNO3 aqueous solution with NaBH4 in the presence of cinnamic acid. It was found that the silver nanoparticles in this process could be trapped at the air-liquid interface to form 2-dimensional nanoparticle films. The morphology of nanoparticle films could be controlled by systematic variation of the experimental parameters. It is worth noting that the nanoparticle films could serve as the active substrates for surface-enhanced Raman scattering (SERS). 4-Aminothiophenol (4-ATP) molecule was used as a test probe to investigate the SERS sensitivity of different nanoparticle films. The results indicated that the nanoparticle films showed excellent Raman enhancement effect. Furthermore, the nanoparticle films prepared by our strategy were found to be efficient electrocatalysts for anodic oxidation of formaldehyde in alkaline medium.  相似文献   

14.
纳米粒子的自组装和有序组装膜的结构与性质近年来受到了人们的广泛关注,纳米粒子的表面结构与性质对由其组装成的有序膜的结构与性质有直接的影响。文章报道了利用自组装技术制备的银纳米粒子与双亲有机分子的单层和多层复合LB膜,通过吸收光谱和表面增强拉曼光谱研究了银纳米粒子与吸附分子间的相互作用,探讨了复合膜的成膜特性及银纳米粒子的拉曼增强特性。十八胺/银粒子复合LB膜的吸收光谱及拉曼光谱显示,十八胺分子与银纳米粒子表面的活位通过NH2中的氮原子以复合体的形式结合;同时,在激发光的作用下复合体可能存在光催化过程。根据银粒子复合LB膜的实验结果,十八胺和十八酸之间的反应产物在复合膜中起空间位阻作用,与银粒子表面的相互作用较弱。  相似文献   

15.
We discuss the dependence of the color of low-concentrated nanoparticle systems on particle size and mass concentration for Ag, Au and TiN nanoparticles, which exhibit a surface plasmon polariton resonance in extinction spectra. Comparison is made with color data obtained for Ag and Au colloidal suspensions. When particles lump into aggregates, the splitting of the surface plasmon resonance into new resonances affects the extinction of light and, hence, the color of the particle assembly. This is demonstrated for aggregated colloidal suspensions of Ag and Au nanoparticles. Finally, for highly concentrated assemblies such as pigment films, we discuss the dependence of the color in diffuse reflectance and transmittance according to Kubelka and Munk (P. Kubelka, F. Munk: Z. Techn. Phys. 12, 593 (1931)), and extend this model by using optical properties of aggregates of spheres. Received: 2 July 2001 / Published online: 10 October 2001  相似文献   

16.
《Current Applied Physics》2010,10(6):1383-1386
Pure and Er3+ doped SnO2 semiconductor nanoparticles have been synthesized by solgel technique. The X-ray diffraction patterns show peaks corresponding to tetragonal structure of SnO2. No Er related impurity peaks could be observed. From the TEM micrographs average crystallite size was estimated to be 12 nm. The UV–visible absorption spectra of SnO2:Er showed blue shift in the absorption shoulder compared with the spectra of undoped SnO2 sample. Photoluminescence emission intensity of SnO2:Er nanoparticles was found to be quenched with increasing concentration of Er3+ ions. The electron spin resonance (ESR) analysis of Er doped SnO2 nanoparticles indicated Er in 3 + state with g = 2.  相似文献   

17.
SnO2-impregnated zeolite composites were used as gas-sensing materials to improve the sensitivity and selectivity of the metal oxide-based resistive-type gas sensors. Nanocrystalline MFI type zeolite (ZSM-5) was prepared by hydrothermal synthesis. Highly dispersive SnO2 nanoparticles were then successfully assembled on the surface of the ZSM-5 nanoparticles by using the impregnation methods. The SnO2 nanoparticles are nearly spherical with the particle size of ~?10 nm. An enhanced formaldehyde sensing of as-synthesized SnO2-ZSM-5-based sensor was observed whereas a suppression on the sensor response to other volatile organic vapors (VOCs) such as acetone, ethanol, and methanol was noticed. The possible reasons for this contrary observation were proposed to be related to the amount of the produced water vapor during the sensing reactions assisted by the ZSM-5 nanoparticles. This provides a possible new strategy to improve the selectivity of the gas sensors. The effect of the humidity on the sensor response to formaldehyde was investigated and it was found the higher humidity would decrease the sensor response. A coating layer of the ZSM-5 nanoparticles on top of the SnO2-ZSM-5-sensing film was thus applied to further improve the sensitivity and selectivity of the sensor through the strong adsorption ability to polar gases and the “filtering effect” by the pores of ZSM-5.  相似文献   

18.
《Current Applied Physics》2020,20(3):431-437
Based on the bipolar resistive switching (RS) characteristics of SnO2 films, we have fabricated a new prototypical device with sandwiched structure of Metal/SnO2/fluorine-doped tin oxide (FTO). The SnO2 microspheres film was grown on FTO glass by template-free hydrothermal synthesis, which was evaporated with various commonly used electrodes such as aluminium (Al), silver (Ag), and gold (Au), respectively. Typical self-rectifying resistance switching behaviors were observed for the RS devices with Al and Au electrodes. However, no obvious rectifying resistance switching behavior was observed for the RS device with Ag electrode. Above results were interpreted by considering the different interface barriers between SnO2 and top metal electrodes. Our current studies pave the ways for modulating the self-rectifying resistance switching properties of resistive memory devices by choosing suitable metal electrodes.  相似文献   

19.
从实验和理论两个方面,探讨了金属Ag不同掺杂浓度对Ag:Bi2O3复合膜线性和非线性光学性质的影响. 用吸收光谱研究了Ag浓度与Ag:Bi2O3复合膜表面等离子体共振带之间的关系;用皮秒Z-扫描技术研究了共振和非共振情况下(激发光波长分别为532nm和1064nm),金属Ag浓度与复合膜三阶非线性极化率的关系. 基于表面等离子体共振理论和局域场增强理论对复合膜进行了分析,得到了不同Ag浓度时Ag:Bi2O3复合膜的三阶非线性效应,研究了激发波长和金属浓度对复合膜线性和非线性光学性质的影响. 结果表明,等离子体共振增强和合适的金属掺杂浓度使得三阶极化率增强二个量级,在Ag浓度为35%左右和接近等离子体共振频率(相应吸收带位于560nm—622nm)的532nm激发时,χ(3)具有最大值2.4×10-9esu. 关键词: 金属纳米颗粒 复合膜 三阶非线性 表面等离子体共振  相似文献   

20.
SPR based fiber optic sensor using nanocomposite is presented. Nanocomposites comprising of Pt nanoparticles with various volume fractions embedded in dielectric matrices of TiO2 and SnO2 are considered. Sensitivity enhances with increase in thickness of nanocomposite and volume fraction of nanoparticles for both nanocomposites. Optimized thicknesses are obtained to be 40 and 50 nm for Pt–TiO2 and Pt–SnO2 nanocomposites respectively while optimized volume fraction is found to be 0.85 for both nanocomposites. 40 nm thick Pt–TiO2 nanocomposite based sensor with 0.85 volume fraction possesses utmost sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号