首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Summary Results of penalization of a one-dimensional Brownian motion ]]>]]>]]>]]>]]>]]>]]>(X_t) $, by its one-sided maximum $\big(S_t=\sup_{0 \leq u \leq t}X_u\big)$, which were recently obtained by the authors are improved with the consideration - in the present paper - of the asymptotic behaviour of the likewise penalized Brownian bridges of length $t$, as $t\rightarrow \infty$, or penalizations by functions of $(S_t,X_t)$, and also the study of the speed of convergence, as $t\rightarrow \infty$, of the penalized distributions at time $t$.  相似文献   

2.
Summary This note is about an occupation time identity derived in [14] for reflecting Brownian motion with drift ]]>]]>]]>]]>]]>]]>]]>]]>]]>]]>]]>]]>]]>-\mu<0,$ RBM($-\mu$), for short. The identity says that for RBM($-\mu$) in stationary state ]]>(I^{+}_t, I^{-}_t) \rr (t-G_t,D_t-t),\qquad t\in \mathbb{R},$$ where $G_t$ and $D_t$ denote the starting time and the ending time, respectively, of an excursion from 0 to 0 (straddling $t$) and $I^{+}_t$ and $I^{-}_t$ are the occupation times above and below, respectively, of the observed level at time $t$ during the excursion. Due to stationarity, the common distribution does not depend on $t.$ In fact, it is proved in [9] that the identity is true, under some assumptions, for all recurrent diffusions and stationary processes. In the null recurrent diffusion case the common distribution is not, of course, a probability distribution. The aim of this note is to increase understanding of the identity by studying the RBM($-\mu$) case via Ray--Knight theorems.  相似文献   

3.
Summary For the simple random walk in ]]>\mathbb{Z}^2$ we study those points which are visited an unusually large number of times, and provide a new proof of the Erdős-Taylor Conjecture describing the number of visits to the most visited point.  相似文献   

4.
Summary A real valued function <InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"13"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"14"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"15"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"16"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"17"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"18"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"19"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"20"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"21"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"22"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"23"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"24"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"25"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"26"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"27"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"28"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"29"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"30"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"31"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"32"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"33"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"34"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>f$ defined on a real interval $I$ is called \emph{$d$-Lipschitz} if it satisfies $|\ell(x)- \ell(y)| \le d(x,y)$ for $x,y\in I$. In this paper, we investigate when a function $p\: I \to \bR$ can be decomposed in the form $p=q+ \ell$, where $q$ is increasing and $\ell$ is $d$-Lipschitz. In the general case when $d\: I^{2} \to \bR$ is an arbitrary semimetric, a function $p\: I \to \bR$ can be written in the form $p=q+ \ell$ if and only if \vspace{-4pt} <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[$$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation> \sum_{i=1}^{n}{\big(p(s_{i})-p(t_{i})-d(t_{i},s_{i}) \big)^{+}} \le \sum_{j=1}^{m}{\big(p(v_{j})-p(u_{j})+d(u_{j},v_{j}) \big)} \vspace{-4pt} $$ is fulfilled for all real numbers $t_{1}<s_{1}, \dots, t_{n}<s_{n}$ and $u_{1}<v_{1}, \dots, u_{m}<v_{m}$ in $I$ satisfying the condition \vspace{-4pt} $$ \sum_{i=1}^{n} 1_{\left]t_i,s_i\right]}= \sum_{j=1}^{m} 1_{\left]u_j,v_j\right]}, \vspace{-4pt} $$ where $1_{\left]a,b\right]}$ denotes the characteristic function of the interval $\left]a,b\right]$. In the particular case when $d\: I^{2} \to R$ is a so-called concave semimetric, a function $p\: I \to \bR$ is of the form $p=q+ \ell$ if and only if \vspace{-4pt} $$ 0 \le \sum_{k=1}^{n}{d(x_{2k-1},x_{2k})} + d(x_0,x_{2n+1}) + \sum_{k=0}^{n}{\big(p(x_{2k+1})-p(x_{2k})\big)} \vspace{-4pt} $$ holds for all $x_0\le x_1\ki \cdots\ki x_{2n}\le x_{2n+1}$ in $I$.  相似文献   

5.
Summary Let <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"13"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>X$ be a real Banach space and $S(X) = \{x \in X: \|x\| = 1\}$ be the unit sphere of $X$. The parameters $E_{\epsilon}(X)=\sup\{\alpha_{\epsilon}(x): x \in S(X)\}$, $e_{\epsilon}(X)=\inf\{\alpha_{\epsilon}(x): x \in S(X)\}$, $F_{\epsilon}(X)=\sup\{\beta_{\epsilon}(x): x \in S(X)\}$, and $f_{\epsilon}(X)=\inf\{\beta_{\epsilon}(x): x \in S(X)\}$, where $\alpha_{\epsilon}(x) = \sup\{\| x + \epsilon y \|^{2}+ \| x - \epsilon y \|^{2}: y \in S(X)\}$ and $\beta_{\epsilon}(x) = \inf\{\| x + \epsilon y \|^{2}+ \| x - \epsilon y \|^{2}: y \in S(X)\}$, are defined and studied. The main result is that a Banach space $X$ with $E_{\epsilon}(X) < 2 + 2\epsilon +\frac{1}{2}\epsilon^{2}$ for some $0\leq \epsilon \leq 1$ has uniform normal structure.  相似文献   

6.
Summary We introduce and investigate three topological spaces <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>(X,\Lambda_m)$, $(X,\Lambda_{mc}^*)$ and $(X,\Lambda_{g\Lambda_m})$ by using $\Lambda_m$-sets, $(\Lambda, m)$-closed sets and generalized $\Lambda_m$-sets, respectively. Especially, we study properties of weak separation axioms on these topological spaces. The investigation enables us to obtain a unified theory of notions related to $\Lambda$-sets [21], semi-$\Lambda$-sets [5] and pre-$\Lambda$-sets [15] in topological spaces.  相似文献   

7.
Summary We give decompositions of continuity and some weaker forms of continuity via idealization using the concepts of <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>\mathcal{A_{I}}$-sets, $\alpha \mathcal{A_{I}}$-sets, $B_{1I}$-sets, $B_{2I}$-sets, $B_{3I}$-sets, $\alpha C_{I}$-sets and $WLC_{I}$-sets.  相似文献   

8.
Summary It is proved that, if <InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>f(x)\in L^p_{[-1,1]}$, $1< p\ki \infty$, changes sign exactly $l$ times, then there exists a real rational function $r(x)\in R_{n}^l$ such that <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[$$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation> {\|f-r\|}_{p}\le C_{p,\delta}{(l+1)}^2\omega {(f,n^{-1})}_p, $$ which generalizes a result of Leviatan and Lubinsky in \cite{4}. A weaker similar result in $L^1_{[-1,1]}$ is also established.  相似文献   

9.
Summary In the paper the <InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"13"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"14"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"15"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"16"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"17"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"18"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"19"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"20"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"21"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"22"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"23"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"24"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"25"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>\phi$-homogeneity equation almost everywhere is studied. Let $G$ and $H$ be groups with zero. Assume that $(X,G)$ is a $G$-space and $(Y,H)$ is an $H$-space. We prove, under some assumption on $(Y,H)$, that if the functions $\phi\: G\to H$ and $F\: X\to Y$ satisfy the equation of $\phi$-homogeneity $F(\alpha x)\eg \phi(\alpha)F(x)$ almost everywhere in $G\times X$ then either $F$ is a zero function or there exists a homomorphism $\widetilde{\phi}\: G\to H$ such that $\phi=\widetilde{\phi}$ almost everywhere in $G$ and there exists a function $\overline{F}\: X\to Y$ such that <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[$$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation> \overline{F}(\alpha x)=\widetilde{\phi}(\alpha)\overline{F}(x) \szo{for} \alpha\in G\setminus\{0\},\quad x\in X, $$ and $F=\overline{F}$ almost everywhere in $X$.  相似文献   

10.
Summary Let <InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"13"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"14"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"15"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"16"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"17"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"18"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"19"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"20"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"21"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"22"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"23"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>\big\{\varphi_k(x)\big\}_{k=1}^\infty$ and $\big\{\psi_l(y)\big\}_{l=1}^\infty$ be arbitrary orthonormal systems (ONS) on $[0,1]$ that satisfy the conditions (5) where $M_1$ and $M_2$ are positive constants. Let $A$ be a Lebesgue measurable subset of ${[0,1]}^2$ such that $S^{\varphi,\psi}(f,x,y)\ki \infty$, for a.e.\ $(x,y)\in A$ for every Lebesgue integrable function $f$ on ${[0,1]}^2$, where $S^{\varphi,\psi}$ is the Sunouchi operator with respect to the product system $\big\{\varphi_k(x) \psi_l(y)$, $k, l=1,2,\dots\big\}$. We study the following problem: How large may the measure of $A$ be? We prove that for each such system we have <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[$$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation> \mu_2A \le 1-\frac{1}{M_1^2 M_2^2} $$ (for the $d$-fold product systems we have $\mu_d A \le 1-\frac{1}{M_1^2 M_2^2\dots M_d^2}$, $d\ge 2$). This estimate is sharp in the class of all such product systems.  相似文献   

11.
Summary An <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"13"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"14"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"15"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"16"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"17"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"18"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"19"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"20"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"21"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"22"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"23"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"24"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"25"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>R$-module $M$ is called weakly injective if for every extension $M \subset X$, $M$ is coclosed in $X$. We show for every noetherian, local, one-dimensional integral domain $R$ with field of fractions $K$ and completion $\hat{R}$, that $\hat{R} \bigotimes\limits_R K$ as $\hat{R}$-module as well as $K/R$ as $R$-module are weakly injective. Moreover, we show that $K/R'$ is weakly injective iff $R$ is analytically unramified. For certain module classes over an arbitrary noetherian ring $R$ the weak injectivity can be described by means of the singular submodule $Z(M)$ as well as by the dual submodule $\overline{Z}(M)=\bigcap\,\{U \subset M\mid M/U$ is small in its injective hull$\}$ (see Talebi and Vanaja, \emph{Commun.\ Algebra} 30 (2002), 1449--1460 and Z\&quot;oschinger, \emph{Commun.\ Algebra} 33 (2005), 3389--3404). If $R$ is local and if $M$ possesses a primary decomposition we prove: every factor module of $M$ is weakly injective iff for every ${\mathfrak{p}} \in \operatorname{Coass}(M)$ the ring of fractions $R_{\mathfrak{p}}$ is a field and the fibre ring $\hat{R} \bigotimes\limits_R \kappa({\mathfrak{p}})$ is semisimple.  相似文献   

12.
Summary The asymptotic expansion of <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>\sum\limits_{n\le x}e^*(n)$ is given, where $e^*(n)$ is defined by $\sum{\frac{{e^*(n)}}{{n^s}}}\eg \prod\limits_{n=2}^\infty (1-1/n^s)$.  相似文献   

13.
Summary We are interested in the study of the sum <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>E+F$ and the product $E*F$, when $E$ and $F$ are of the form $s_{\xi}$, or $s_{\xi}^{\circ}$, or $s_{\xi}^{(c)}$. Then we deal with the identities $(E+F) (\Delta^{q}) \eg E$ and $(E+F) (\Delta^{q}) \eg F$. Finally we consider matrix transformations in the previous sets and study the identities $\big((E^{p_{1}}+F^{p_{2}}) (\Delta^{q}),s_{\mu}\big) \eg S_{\alpha^{p_{1}}\pl \beta^{p_{2}},\mu}$ and $\big(E+F(\Delta^{q}),s_{\gamma}\big) \eg S_{\beta,\gamma}$.  相似文献   

14.
Summary Let <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"13"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"14"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"15"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>\mathcal{A}=\{a_{1},a_{2},\dots{}\}$ $(a_{1} \le a_{2} \le \dots{})$ be an infinite sequence of nonnegative integers, and let $R(n)$ denote the number of solutions of $a_{x}+a_{y}=n$ $(a_{x},a_{y}\in\mathcal{A})$. P. Erd?s, A. Sárk?zyand V. T. Sós proved that if $\lim_{N\to\infty}\frac{B(\mathcal{A},N)}{\sqrt{N}}=+\infty$ then $|\Delta_{1}(R(n))|$ cannot be bounded, where ${B(\mathcal{A},N)}$ denotes the number of blocks formed by consecutive integers in $\mathcal{A}$ up to $N$ and $\Delta_{k}$ denotes the $k$-th difference. The aim of this paper is to extend this result to $\Delta_{k}(R(n))$ for any fixed $k\ge2$.  相似文献   

15.
Summary The following conjecture of K\'aroly Bezdek and J\'anos Pach is cited in~[1]. If <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>K\subset{\mathbb R}^d$ is a convex body then any packing of pairwise touching positive homothets of $K$ consists of at most $2^d$ copies of $K$. We prove a weaker bound, $2^{d+1}$.  相似文献   

16.
Summary We prove that the mininum surface area of a Voronoi cell in a unit ball packing in <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>{\mathbb E}^3$ is at least $16.1977$. This result provides further support for the Strong Dodecahedral Conjecture according to which the minimum surface area of a Voronoi cell in a $3$-dimensional unit ball packing is at least as large as the surface area of a regular dodecahedron of inradius $1$, which is about $16.6508\ldots\,$.  相似文献   

17.
Summary It follows from [1], [4] and [7] that any closed <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"13"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"14"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>n$-codimensional subspace ($n \ge 1$ integer) of a real Banach space $X$ is the kernel of a projection $X \to X$, of norm less than $f(n) + \varepsilon$~($\varepsilon > 0$ arbitrary), where \[ f (n) = \frac{2 + (n-1) \sqrt{n+2}}{n+1}. \] We have $f(n) < \sqrt{n}$ for $n > 1$, and \[ f(n) = \sqrt{n} - \frac{1}{\sqrt{n}} + O \left(\frac{1}{n}\right). \] (The same statement, with $\sqrt{n}$ rather than $f(n)$, has been proved in [2]. A~small improvement of the statement of [2], for $n = 2$, is given in [3], pp.~61--62, Remark.) In [1] for this theorem a deeper statement is used, on approximations of finite rank projections on the dual space $X^*$ by adjoints of finite rank projections on $X$. In this paper we show that the first cited result is an immediate consequence of the principle of local reflexivity, and of the result from [7].  相似文献   

18.
Summary Let <InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"13"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"14"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"15"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"16"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"17"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"18"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"19"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"20"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"21"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>M^n$ be a Riemannian $n$-manifold with $n\ge 4$. Consider the Riemannian invariant $\sigma(2)$ defined by <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[$$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation> \sigma(2)=\tau-\frac{(n-1)\min \Ric}{n^2-3n+4}, $$ where $\tau$ is the scalar curvature of $M^n$ and $(\min \Ric)(p)$ is the minimum of the Ricci curvature of $M^n$ at $p$. In an earlier article, B. Y. Chen established the following sharp general inequality: $$ \sigma(2)\le \frac{n^2{(n-2)}^2}{2(n^2-3n+4)}H^2 $$ for arbitrary $n$-dimensional conformally flat submanifolds in a Euclidean space, where $H^2$ denotes the squared mean curvature. The main purpose of this paper is to completely classify the extremal class of conformally flat submanifolds which satisfy the equality case of the above inequality. Our main result states that except open portions of totally geodesic $n$-planes, open portions of spherical hypercylinders and open portion of round hypercones, conformally flat submanifolds satifying the equality case of the inequality are obtained from some loci of $(n-2)$-spheres around some special coordinate-minimal surfaces.  相似文献   

19.
Summary A frame homomorphism <InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"13"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"14"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"15"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"16"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"17"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>f\: L\to M$ between locally connected frames is called a \emph{localic spread} if $\bigcup\limits_{u\in L}S_{u}$ is a basis for $M$, where <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[$$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation> S_{u}=\{x\in M\mid x\Leqq_{c}f(u)\} $$ for each $u\in L$, where $x\Leqq_{c}h(u)$ denotes that ``$x$ is a component of $h(u)$'. Madden-type generators and relations are applied on $L$ to form a freely generated frame $CM$ induced by $j\: M\to CM$ leading to a \emph{spread extension} $j\circ f\: L\to CM$ of~$f$. In this article, we discuss properties of a local spread extension (which is not complete) between locally connected frames.  相似文献   

20.
Summary We provide uniform rates of convergence in the central limit theorem for linear negative quadrant dependent (LNQD) random variables. Let <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>\{X_{n},\allowbreak n\ge1\}$ be a LNQD sequence of random variables with $EX_{n}=0$, set $S_{n}=\sum_{j=1}^{n}X_{j}$ and $B_{n}^{2}=\Var\, (S_{n})$. We show that \begin{gather*} \sup_{x} \left|P\left(\frac{S_{n}}{B_{n}}<x\right)-\Phi(x)\right|= O\bigg(n^{-\delta/(2+3\delta)}\vee \frac{n^{3\delta^{2}/(4+6\delta)}}{B^{2+\delta}_{n}} \sum_{i=1}^{n} E{|X_{i}|}^{2+\delta}\bigg) \end{gather*} under finite $(2+\delta)$th moment and a power decay rate of covariances. Moreover, by the truncation method, we obtain a Berry--Esseen type estimate for negatively associated (NA) random variables with only finite second moment. As applications, we obtain another convergence rate result in the central limit theorem and precise asymptotics in the law of the iterated logarithm for NA sequences, and also for LNQD sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号