首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The skin of the female hairless albino mouse (Skh 1) was used to study the enhancement of solar simulated radiation (SSR) tumorigenesis by 5-methoxypsoralen (5-MOP) in model perfumes that contain bergamot oil. This work was done in association with yeast mutagenicity studies and human skin phototoxicity studies. Analyses of time-to-onset of tumour observation with 5-MOP at 0, 5, 15 and 50 ppm show a highly significant 5-MOP dose effect and the data indicate that 5-MOP has phototumorigenic potential even at 5 ppm. The addition of 0.5% UVB and 0.5% UVA sunscreens significantly reduces the tumorigenicity associated with the vehicle (i.e. 5-MOP at 0 ppm) and 5-MOP at all concentrations. Pairwise comparisons of 5-MOP (at 5 or 15 ppm) plus sunscreens with vehicle plus sunscreens show that the sunscreens afford total protection at the lower 5-MOP concentrations. Additional studies show that a 5-6 h delay between 5-MOP application and SSR exposure defers the time-to-onset of tumours as does intermittent 5-MOP and SSR treatment. A comparison of 5-MOP at 50 ppm in bergamot oil with 5-MOP at 50 ppm prepared from pure 5-MOP crystals shows identical results, indicating that the active phototumorigenic agent in bergamot oil is 5-MOP and not other related compounds, which may be present at greater concentrations. Analyses of tumour histology at death show, in general, similar patterns of malignancy for all groups. Thus although it is possible to delay tumorigenesis by various strategies, the tumours that eventually develop are just as likely to be malignant, if not more so, when compared with non-delayed groups.  相似文献   

2.
The in vivo reflectance spectra of Caucasian skin, coated with preparations containing sunscreen vehicle, vehicle with olive oil and vehicle with the UVB and UVA absorbers 2-ethylhexyl-4-methoxycinnamate and 4-t-butyl-4'-methoxydibenzoylmethane were determined. All preparations reduced the reflectance of skin throughout the UVA spectral range (320 to 400 nm), with the sunscreen preparations containing the UVB and UVB plus UVA absorbers reducing the reflectance more than the sunscreen vehicle alone. This phenomenon, which facilitates the penetration of UV radiation to the lower epidermis and dermal layers of skin and therefore lessens sunscreen efficacy, is attributed to optical coupling mediated by refractive index matching of the sunscreen to the upper epidermis. The greater reduction in skin diffuse reflectance caused by sunscreens containing methoxycinnamate is associated with this compound's high refractive index. Also, by determining the excitation spectra of the autofluorescence originating from the dermal layer of skin, the transmission spectra of the various components of sunscreen on skin were established, and these were in good general agreement with previously published spectra.  相似文献   

3.
It is now well documented that chronic UVA exposure induces damage to human skin. Therefore, modern sunscreens should not only provide protection from both UVB and UVA radiation but also maintain this protection during the entire period of exposure to the sun. UVA filters, however, are rare and not sufficiently photostable. We investigated the effect of the introduction of a new UV filter, bis-ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S), in oil in water sunscreen formulations on the photostability of butyl methoxydibenzoylmethane (Avobenzone [AVB]) after irradiation with an optically filtered Xenon arc source (UV irradiance adjusted at 1 mean effective dose [MED]/min). With spectrophotometrical methods to assess the sun protection factor (SPF) and UVA ratio and chromatographical methods to determine the amount of UV filters recovered after irradiation we showed that Tinosorb S prevented the photodegradation of AVB in a concentration-dependent way, leading to a sustained SPF and UVA ratio even after irradiation with doses of up to 30 MED. Since AVB was shown to destabilize ethylhexyl methoxycinnamate (EHM) we tested the effect of Tinosorb S in sunscreens containing this UV filter combination. Here too Tinosorb S showed photoprotective properties toward both UV filters. Thus, Tinosorb S can be used successfully to improve the photostability and efficiency of sunscreens containing AVB and EHM.  相似文献   

4.
A Review of Sunscreen Safety and Efficacy   总被引:9,自引:0,他引:9  
The use of sunscreen products has been advocated by many health care practitioners as a means to reduce skin damage produced by ultraviolet radiation (UVR) from sunlight. There is a need to better understand the efficacy and safety of sunscreen products given this ongoing campaign encouraging their use. The approach used to establish sunscreen efficacy, sun protection factor (SPF), is a useful assessment of primarily UVB (290–320 nm) filters. The SPF test, however, does not adequately assess the complete photoprotective profile of sunscreens specifically against long wavelength UVAI (340–400 nm). Moreover, to date, there is no singular, agreed upon method for evaluating UVA efficacy despite the immediate and seemingly urgent consumer need to develop sunscreen products that provide broad-spectrum UVB and UVA photoprotection. With regard to the safety of UVB and UVA filters, the current list of commonly used organic and inorganic sunscreens has favorable toxico-logical profiles based on acute, subchronic and chronic animal or human studies. Further, in most studies, sunscreens have been shown to prevent the damaging effects of UVR exposure. Thus, based on this review of currently available data, it is concluded that sunscreen ingredients or products do not pose a human health concern. Further, the regular use of appropriate broad-spectrum sunscreen products could have a significant and favorable impact on public health as part of an overall strategy to reduce UVR exposure.  相似文献   

5.
Bergamottin, which accounts for about two-thirds of the absorption of UVA and UVB light by bergamot oil, is shown to be fairly unstable on UV irradiation of solutions of bergamot oil (in ethanol-water, 80:20 (w/w)). Bergamottin photodegradation is partly inhibited by molecular oxygen and also by a cinnamate sunscreen acting as a triplet excited state quencher. On UV irradiation of bergamot oil, type II photodynamic properties, i.e. singlet oxygen production, are observed, which can be mainly attributed to the excitation of bergamottin by light. Therefore bergamottin can be considered as a potential photosensitizer in the photobiological activity of bergamot oil.  相似文献   

6.
Albino hairless mice (Skh:HR-l) exposed to sub-erythemal doses of UVB or UVA radiation display physical, visible, and histological alterations. Skin surface replicas, transepidermal water loss, and skin fold thickness were found to change with irradiation. Visibly, the skin wrinkled with UVB and sagged with UVA exposure. These changes were graded on 3-point scales. Histological alterations included tissue thickening, loss of elastic fibers, elastosis, loss of collagen, and increases in muco-substances. The UVB alterations occur to a much lesser extent with an SPF-15 (7% PABA and 3% oxybenzone) sunscreen product. This sunscreen product had little effect on development of UVA-induced changes. However, an efficient UVA sunscreen (Parsol 1789) did reduce the UVA-induced changes. Many of the UVB-induced alterations regressed after UVB irradiation was stopped. No regression in UVA-induced alterations was observed when UVA irradiation was stopped. Qualitatively, the effects with UVA irradiation were like those observed in mouse chronological aging. These models and the convenient physical and visible grading methods described can be used to determine the effectiveness of topical treatments, such as sunscreens.  相似文献   

7.
Genotoxicity of bergapten and bergamot oil in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
In order to determine the genotoxic potential of bergapten (5-methoxypsoralen (5-MOP] and bergamot oil (BO), the genetic effects of 5-MOP and BO (containing equivalent amounts of 5-MOP) were studied in haploid and diploid yeast (Saccharomyces cerevisiae) using solar simulated radiation (SSR). At equal doses of SSR, equal concentrations of 5-MOP alone or 5-MOP in BO have a similar influence on survival and on the induction of cytoplasmic "petite" mutations, reverse and forward mutations, mitotic gene conversion and genetically aberrant colonies including mitotic crossing over. No reciprocity is found between SSR dose and 5-MOP concentration for cytotoxic, mutagenic and recombinogenic effects. In the presence of chemical filters (Parsol 1789, a UVA filter, and Parsol MCX, a cinnamate derivative acting as a UVB filter) considerable protection is observed against the induction of genetic effects by 5-MOP and BO containing 5-MOP in haploid and diploid cells. As indicated by the lower induction kinetics, the protection is higher than expected from the light-absorbing properties, suggesting photochemical interaction. The protection is slightly higher for BO than for 5-MOP. The induction of genetic effects by 5-MOP alone or BO containing 5-MOP is independent of oxygen. Experiments on suction blister fluids taken from patients after topical treatment with BO containing 5-MOP indicate that in comparison with water the bioavailability and thus the genotoxic effects of the compounds are decreased. Moreover, in addition to the filtering effect against the photoinduced genotoxic effects of BO, the presence of chemical filters apparently reduces the penetration of BO containing 5-MOP and provides a reduction in biological effectiveness.  相似文献   

8.
Evaluation of the photoprotection provided by sunscreens is performed either through the induction of erythema and expressed as the sun protection factor (SPF), or by the UVA-mediated persistent pigment darkening (PPD). None of these two endpoints has a link with skin cancer, the most deleterious consequence of excess exposure to solar UV radiation. We thus set up a complementary approach to evaluate the protection provided by sunscreens to the genome of human skin. This is based on the quantification of the thymine cyclobutane dimer (TT-CPD), the main DNA lesion induced by both UVB and UVA radiations. Irradiations were performed ex vivo on human skin explants and the level of TT-CPD in DNA was determined by HPLC associated with tandem mass spectrometry. The technique was first optimized and validated with three standard sunscreens. The study was then extended to the evaluation of a commercial high SPF sunscreen exhibiting efficient UVA photoprotection. The DNA protecting factor was found to reflect the ratio between UVB and UVA photoprotection, although the absolute values of the genomic protection were, as a general trend, lower than either SPF or PPD. These data show the usefulness of the proposed approach for the evaluation of the genoprotection afforded by sunscreens.  相似文献   

9.
Abstract— For preventing or minimizing acute and chronic skin damage caused by UV radiation, the use of sunscreens is probably the most important measure. To screen the protective efficacy of new sunscreen molecules or formulations against UV rays, we evaluated as in vitro testing methods the use of two three-dimensional models, a dermal equivalent (DE) and a skin equivalent (SE). The DE is composed of a porous collagen-glycosaminoglycans-chitosan matrix populated by normal human fibroblasts. The SE is comprised of a fully differentiated epidermis realized by seeding keratinocytes onto the DE. In this study, we demonstrated that the DE and SE models react to the deleterious effects of UVA and UVB. Then, we extended our research to the evaluation of their usefulness for photoprotection trials. Sunscreen agents (Euso-lex 8020 and 6300) and commercially available sunscreens (chemical and physical filter formulations) that protect the skin against either UVA or UVB were evaluated. The tested products were applied (n = 6) topically (10 μL) and incubated for 30 min prior to irradiation over a range of UVA (0-50 J/cm2) or UVB (0-5 J/cm2). The photoprotection provided by the tested sunscreen molecules and formulations was evaluated by measurement of residual cellular viability 24 h postirradiation using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide (MTT) test and assessment of the inflammation response by interleukin-la release assay. When sunscreens were applied prior to UV exposure, a higher residual cellular viability versus control was obtained, demonstrating the photoprotective effects of the tested products. These in vitro models could be used for screening tests to evaluate the protective effects of sunscreen molecules and formulations, especially for UVA trials because there is a lack of consensus for an in vivo method.  相似文献   

10.
There remains an unmet need for skin tissue-based assays for the measurement of the UVA protection and efficacy of sunscreens. Here we describe development of a novel electron paramagnetic resonance assay that uses the photogeneration of reactive melanin radical as a measure of UV light penetration to melanocytes in situ in skin. We have used areas of focal melanocytic hyperplasia in the skin of Monodelphis domestica to model the human nevus. We show that we are able to use this assay to determine the monochromatic protection factors (mPF) of research and commercial sunscreens at specific narrow wavebands of UVB, UVA and blue visible light. Both commercial sunscreens, a sun protection factor (SPF) 4 and an SPF 30 product, had mPFs in the UVB range that correlated well with their claimed SPF. However, their mPF in the UVA ranges were only about one-third of claimed SPF. This technique can be used to design and assay sunscreens with optimally balanced UVA and UVB protection.  相似文献   

11.
We have previously shown that skin reconstructed in vitro is a useful model to study the effects of UVB and UVA exposure. Wavelength-specific biological damage has been identified such as the formation of sunburn cells (SBC) and pyrimidine dimers after UVB irradiation and alterations of dermal fibroblasts after UVA exposure. These specific effects were selected to evaluate the protection afforded by two sunscreens after topical application on the skin surface. Simplified formulations having different absorption spectra but similar sun protection factors were used. One contained a classical UVB absorber, 2-ethylhexyl-p-methoxycinnamate. The other contained a broad-spectrum absorber called Mexoryl SX, characterized by its strong absorbing potency in the UVA range. Both filters were used at 5% in a simple water/oil vehicle. The evaluation of photoprotection on in vitro reconstructed skin revealed good efficiency for both preparations in preventing UVB-induced damage, as shown by SBC counting and pyrimidine dimer immunostaining. By contrast, only the Mexoryl SX-containing preparation was able to efficiently prevent UVA-specific damage such as dermal fibroblast disappearance. Our data further support the fact that skin reconstructed in vitro is a reliable system to evaluate the photoprotection provided by different sunscreens against specific UVB and UVA biological damage.  相似文献   

12.
The in vivo assessment of sunscreen protection does not include the photogenotoxicity of UVA or UVB solar radiation. Using the comet assay we have developed a simple and rapid technique to quantify sunscreen efficacy against DNA damage induced by UV light. Cutaneous human melanocytes from primary cultures were embedded in low-melting point (LPM) agarose and exposed to UVA (0.8 J/cm2) or to UVB (0.06 J/cm2) through a quartz slide covered with 10 microL volumes of sunscreens. DNA single-strand breaks induced directly by UVA at 4 degrees C and indirectly through nucleotide excision repair by UVB following a 35 min incubation period at 37 degrees C were quantified using the comet assay. Tail moments (TM) (tail length x %tail DNA) of 100 cells/sample were determined by image analysis. DNA damage was evaluated with a nonlinear regression analysis on the normalized distribution frequencies of TM using a chi 2 function. The coefficients of genomic protection (CGP) were defined as the percentage of inhibition of DNA lesions caused by the sunscreens. Twenty-one sunscreens were evaluated, and the calculated CGP were compared with the in vivo sun protective factor (SPF) and with the protection factor UVA (PFA). Nonlinear relationships were found between SPF and CGPUVB and between PFA and CGPUVA.  相似文献   

13.
Extracts of Hypericum perforatum (St. John's wort) are used in the treatment of depression. They contain the plant pigment hypericin and hypericin derivates. These compounds have light-dependent activities. In order to estimate the potential risk of phototoxic skin damage during antidepressive therapy, we investigated the phototoxic activity of hypericin extract using cultures of human keratinocytes and compared it with the effect of the well-known phototoxic agent psoralen. The absorbance spectrum of our Hypericum extract revealed maxima in the whole UV range and in parts of the visible range. We cultivated human keratinocytes in the presence of different Hypericum concentrations and irradiated the cells with 150 mJ/cm2 UVB, 1 J/cm2 UVA or 3 h with a white light of photon flux density 2.6 mumol m-2 s-1. The determination of the bromodeoxyuridine incorporation rate showed a concentration- and light-dependent decrease in DNA synthesis with high hypericin concentrations (> or = 50 micrograms/mL) combined with UVA or visible light radiation. In the case of UVB irradiation a clear phototoxic cell reaction was not detected. We found phototoxic effects even with 10 ng/mL psoralen using UVA with the same study design as in the case of the Hypericum extract. These results confirm the phototoxic activity of Hypericum extract on human keratinocytes. However, the blood levels that are to be expected during antidepressive therapy are presumably too low to induce phototoxic skin reactions.  相似文献   

14.
The aim of the study was to investigate the effect of the natural antioxidant quercetin on the photostability of the most widely used combination of UVA (320–400 nm) and UVB (290–320 nm) filters, respectively butyl methoxydibenzoylmethane (BMDBM) and octyl methoxycinnamate (OMC). In order to reproduce the conditions prevalent in commercial sunscreen products, the stabilizing efficacy of quercetin was evaluated in model creams containing BMDBM (3%, wt/wt) together with OMC (4%, wt/wt) and exposed to a solar simulator at an irradiance corresponding to natural sunlight. Quercetin was found to enhance the photostability of the two UV filters in a concentration-dependent way. Addition of quercetin to the sunscreen formulation significantly reduced the photodegradation of BMDBM and OMC from 40.3 ± 2.4 to 27.7 ± 2.6% and from 51.3 ± 2.1 to 42.2 ± 2.0%, respectively. Moreover, comparative photodegradation studies demonstrated that quercetin was much more effective and at a lower concentration than commonly used stabilizer (octocrylene) and antioxidants (vitamin E, butylated hydroxyanisole). In vitro determination of the UVB and UVA protection parameters showed that the quercetin-based formulation fulfilled the official requirements on sunscreen products. Because of its photostabilizing and multiple antioxidant properties, quercetin represents a useful additive for the formulation of effective broad-spectrum sunscreens containing BMDBM and OMC.  相似文献   

15.
Sun exposure histories were obtained from a series of patients age 35 or younger following diagnosis and removal of a basal cell carcinoma (BCC). The DNA was extracted from tumor biopsy samples derived from BCC of 10 patients who reported that they did not use sunscreens during youth (age 18 or younger) and 10 patients who routinely employed sunscreens during this age period. Exons 5-9 of the p53 gene were then amplified in three fragments from these samples using a nested polymerase chain reaction (PCR) approach and screened for mutations using an RNA heteroduplex assay. All PCR products displaying evidence of a mutation were sequenced. It was found that 6 of the 10 patients who were not routine sunscreen users displayed mutations in these p53 exons. All of the mutations were located at dipyrimidine sites, five of the six were C-->T transitions and one mutation was a tandem double mutation, consistent with a role for solar UVB in BCC formation. In contrast, only one p53 mutation was detected in the group of 10 patients who routinely employed sunscreens during childhood and adolescence. Hence, a significantly (P = 0.029) lower level of p53 mutations was detected in the BCC obtained from sunscreen users compared with tumors derived from nonusers. These findings suggest that the mechanisms involved in the etiology of skin carcinogenesis differ in sunscreen users compared with people who did not routinely employ sunscreens. These data are also indicative of a protective effect associated with sunscreen use against the formation of p53 mutations. It is possible that the patients who were diagnosed with BCC despite their use of sunscreens possessed a genetic susceptibility for skin cancer formation and developed BCC through a p53-independent pathway. Alternatively, solar UVA wavelengths, that were generally not blocked by the suncare products employed by the sunscreen users, may have played a significant role in BCC development through induction of a mutation(s) in an oncogene and/or a tumor suppressor gene, other than p53, for these patients.  相似文献   

16.
The phototoxic and photoallergic effects of the once popular UV sunscreen p-aminobanzoic acid are related, in part, to its ability to sensitize the formation of singlet oxygen as well as other reactive oxygen species. In this work we demonstrate that the sunscreen-photoinduced inactivation of a model protein, horseradish peroxidase, is reduced by approximately a factor of three when the sunscreen is encaspsulated in zeolite sodium Y. These results provide evidence that using the technology of zeolite encapsulation to prepare a supramolecular sunscreen that minimizes the skin contact of active ingredients may reduce the adverse effects of "naked" sunscreens on biological systems. These radiation-induced effects, unfortunately, frequently accompany the desirable UV-screening role of these products. These results provide an important benchmark for the use of zeolite encapsulation as a means of improving the safety of UV sunscreens for topical application.  相似文献   

17.
18.
Novel sunscreens are required providing active protection in the UVA and UVB regions. On the other hand, there is an increasing concern about the photosafety of UV filters, as some of them are not sufficiently photostable. Avobenzone is one of the most frequently employed sunscreen ingredients, but it has been reported to partially decompose after irradiation. In the present work, photophysical and photochemical studies on a methylated avobenzone-derivative have shown that the diketo form is responsible for photodegradation. A transient absorption was observed at 380 nm after laser flash photolysis excitation at 308 nm. It was assigned to the triplet excited state of the diketo form, as inferred from quenching by oxygen and β-carotene. This transient also interacted with key building blocks of biomolecules by triplet–triplet energy transfer (in the case of thymidine) or electron transfer processes (for 2'-deoxyguanosine, tryptophan and tyrosine). Irradiation of the avobenzone derivative in the presence of a triazine UV-B filter (E-35852) diminished the undesirable effects of the compound by an efficient quenching of the triplet excited state. Thus, sunscreen formulations including triplet quenchers could provide effective protection from the potential phototoxic and photoallergic effects derived from poor photostability of avobenzone.  相似文献   

19.
Sunscreens are used to protect the human skin against harmful UV radiation. Today there is a trend toward higher sun protection factors (SPF) and better UVA protection. Methods for the assessment of SPF and UVA protection involve irradiation of the product, and the photostability properties of the sunscreen have an influence on its performance. Sunscreens often contain more than one UV filter. Thus it is important to understand the photostability properties of the complete system. The filter combinations used may exhibit destabilizing, stabilizing or inert interactions. For that reason, besides assessment of the properties of the single filters, photostabilities of binary filter combinations are investigated. Destabilization occurs when two UV absorbers undergo a chemical reaction after absorption of UV radiation. Stabilization may be achieved when the optical density of the system is very high, giving rise to a self‐protection effect of the sunscreen film. Photounstable UV absorbers may be additionally stabilized by employing triplet quenchers. Being aware of these mechanisms and applying them for specific UV filter combinations can help in designing efficient sunscreens.  相似文献   

20.
Owing to the spectral distribution of solar UV, the UVA component of sunlight is now believed to be the main cause of photoaging and photocarcinogenesis and is much more effective than UVB in inducing peroxidative damage. Consequently, most skin care cosmetic products now include UVA filters in their formulations along with UVB filters. These modern sunscreens should provide and maintain their initial absorbance, hence protection, throughout the entire period of exposure to sunlight. However, not all UVA and UVB filters are sufficiently photostable. In this study, we examine the correlation between the photochemical degradation of sunscreen agents under UVA irradiation, with particular reference to the UVA-absorber 4-tert-butyl-4'-methoxydibenzoylmethane, alone and in combination with other organic UV filters (2-ethylhexyl 4 methoxycinnamate and 2-ethylhexyl 2-cyano-3,3-diphenylacrylate) and their ability to prevent UVA-induced lipid peroxidation. Since antioxidants are also added to formulations to deactivate free radicals generated during UVA exposure, vitamin E and the synthetic antioxidant, bis(2,2,6,6-tetramethyl-1-oxyl-piperidine-4-yl)sebacate, a nitroxide derivative, were also included in this study. By using simple in vitro tests, the results show that a decrease in spectral absorbance of the UV filters correlates in most cases with increased UVA-induced lipid peroxidation; this depends on the specific UV absorber analysed and also on whether they are alone or in combination. Furthermore, the combined presence or absence of antioxidants has a profound effect on this oxidative event. In particular, the nitroxide appears to be a more efficient photo-antioxidant than vitamin E. Similar experiments were also performed under natural sunlight and the results obtained did not differ substantially from those performed under UVA. The results presented and discussed in this work may help in understanding the effects of UVA/UVB absorbers and antioxidants upon the level of UV-induced ROS generated under UVA exposure and in natural sunlight which could be relevant for improving the photoprotection and efficacy of skin care cosmetic formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号