首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human beta2-microglobulin (beta2-m) is a small amyloidogenic protein responsible for dialysis-related amyloidosis, which represents a severe complication of long-term hemodialysis. A therapeutic approach for this amyloidosis could be based on the stabilization of beta2-m through the binding to a small molecule, to possibly inhibit protein misfolding and amyloid fibril formation. The search of a strong ligand of this protein is extremely challenging: by using CE in affinity and refolding experiments we study the effect that previously selected sulfonated molecules have on the equilibrium between the native form and an ensemble of conformers populating the slow phase of beta2-m folding. These data are correlated with the effect that the same molecules exert on in vitro fibrillogenesis experiments.  相似文献   

2.
The simultaneous capillary electrophoretic enantioseparation of adrenergic beta(2)-agonists enantiomers (trantinterol, mabuterol, clenbuterol, bambuterol) was studied with beta-cyclodextrin, ethyl-beta-CD, methyl-beta-CD, hydroxypropyl-beta-CD, and hydroxyethyl-beta-CD as chiral selector. The type and concentration of the chiral selector and buffer pH played a very important role in the enantioseparation of the analyzed compounds. Hydroxypropyl-beta-CD was found to be the most effective complexing agent and allowed excellent chiral/achiral resolutions compared to the other CDs. The simultaneous enantioseparation of four beta(2)-agonists was achieved using 100 mM citric acid-10 mM Na(2)HPO(4) buffer at pH 2.5 containing 120 mM hydroxypropyl-beta-CD with an applied voltage of 20 kV. Method validation in terms of repeatability, linearity, and limits of detection and quantification was performed. The effect of structural features of analytes on R(s) and t(m) was studied. Complexation binding constants for the interactions between the four compounds and three different CDs were evaluated for elucidating the enantioseparation mechanism. It was found that very small differences in the chemical structure of the analytes resulted in significant changes in stereoselective recognition.  相似文献   

3.
Separation of mutant from nonmutant DNA sequences of 100 bp may be accomplished by using defined denaturing conditions of chemical denaturant and/or elevated temperature during electrophoresis on either polyacrylamide slab gels (denaturing gradient gel electrophoresis, DGGE) or capillary gels (constant denaturant capillary electrophoresis, CDCE). In analysis of mutant directly from a polymerase chain reaction (PCR) product mixture, both have detection sensitivities of approximately 1%. CDCE that facilitates an intermediate mutant enrichment step permits detection of mutants at fractions as low as 2 x 10(-6). Here we report the successful application of both approaches to scan for mutations of the human beta-globin gene (HBB) in two human population samples of approximately 5000 persons in the HBB. Using DGGE, the coding region and flanking intronic splice sites of HBB were scanned in a population of 4949 Han Chinese individuals in pool sizes of 48 individual DNA samples. Four point mutations ranging in mutant frequency from 0.5 to 0.0002 were identified. Using CDCE with a mutant enrichment step, these same sequences were scanned in a population of 5028, predominantly African-American juveniles (<9 years) as a single pooled DNA sample. Three point mutations were identified ranging in mutant frequency from 0.13 to 0.0005. This study shows that both the DGGE/small pool and the CDCE/large pool approaches offer the means to define the fine structure map of genetic variation in large population samples, and with appropriately engineered facilities to provide high throughput, should be useful in pangenomic scans to discover genes carrying casual mutations for common diseases.  相似文献   

4.
The potential use of affinity capillary electrophoresis in a microscale search for mutually interacting substances in biological fluid is demonstrated. Some disaccharides, especially gentiobiose (Gen), derivatized with 1-phenyl-3-methyl-5-pyrazolone, caused peak retardation when electrophoresed in a neutral running buffer, containing human serum. Gen, the most significantly retarded disaccharide, was converted to its negatively charged bis-mercaptoethanesulfonate derivative (MerESGen), and a serum sample was analyzed in a neutral buffer containing the derivatized disaccharide. Two peaks, belonging to the beta-globulin fraction, were found to be remarkably retarded in the buffer containing MerES-Gen in a concentration-dependent way. These findings prove an interaction between disaccharides and serum proteins.  相似文献   

5.
Free solution capillary electrophoresis with UV detection is here used to retrieve information on the conformational changes of wild‐type β2‐microglobulin and a series of naturally and artificially created variants known to have different stability and amyloidogenic potential. Under nondenaturing conditions, the resolution of at least two folding conformers at equilibrium is obtained and a third species is detected for the less stable isoforms. Partial denaturation by using chaotropic agents such as acetonitrile or trifluoroethanol reveals that the separated peaks are at equilibrium, as the presence of less structured species is either enhanced or induced at the expenses of the native form. Reproducible CE data allow to obtain an interesting semiquantitative correlation between the peak areas observed and the protein stability. Thermal unfolding over the range 25–42°C is induced inside the capillary for the two pathogenic proteins (wtβ2‐microglobulin and D76N variant): the large differences observed upon small temperature variation draw attention on the robustness of analytical methods when dealing with proteins prone to misfolding and aggregation.  相似文献   

6.
An estimation method for determination of binding constants of receptors to ligands by affinity capillary electrophoresis was evaluated. On the basis of the theories of pseudostationary phase or so-called dynamic stationary phase, the retention factor (k) was used to represent the interaction between the receptor and ligand. k could be easily deduced from the migration times of the ligand and the receptor. Then, with the linear relationship of k versus the concentration of ligand in the running buffer, the binding constant K b was calculated from the slope and intercept. In order to test its feasibility, the calculation method was demonstrated using three model systems: the interactions between vancomycin and N-acetyl-d-Ala-d-Ala, ristocetin and N-acetyl-d-Ala-d-Ala, and carbonic anhydrase B and an arylsulfonamide. Estimated binding constants were compared with those determined by other techniques. The results showed that this estimation method was reliable. This calculation method offers a simple and easy approach to estimating binding constants of ligands to receptors.  相似文献   

7.
This work investigates the resolving power of 2,3-dihydroxypropyl-beta-CD (2,3-DHP-beta-CD) and 3-hydroxypropyl-beta-CD (3-HP-beta-CD) as chiral mobile phase additives (CMPAs) using CE. The effects of experimental parameters (CD concentration, buffer pH, and buffer concentration) on enantiorecognition were investigated. More than 20 basic chiral drugs were resolved with satisfactory enantioselectivity. Comparison with 2-hydroxypropyl-beta-CD (2-HP-beta-CD) showed that one or both of the two new chiral selectors show enhanced enantiorecognition for several molecules with bulky substitutes, such as Zopiclone and Mianserin, however, 2-HP-beta-CD has higher enantiorecognition for most of the analytes. Further studies on the structures of analytes and CMPAs showed that the OH moiety on the propyl spacer plays an important role in the separation of some chiral drugs.  相似文献   

8.
Strong, sequence‐specific gas‐phase bindings between proline‐rich peptides and alkaline earth metal ions in nanoESI‐MS experiments were reported by Lehmann et al. (Rapid Commun. Mass Spectrom. 2006, 20, 2404–2410), however its relevance for physiological‐like aqueous phase is uncertain. Therefore, the complexes should also be studied in aqueous solution and the relevance of the MS method for binding studies be evaluated. A mobility shift ACE method was used for determining the binding between the small peptide GAPAGPLIVPY and various metal ions in aqueous solution. The findings were compared to the MS results and further explained using computational methods. While the MS data showed a strong alkaline earth ion binding, the ACE results showed nonsignificant binding. The proposed vacuum state complex also decomposed during a molecular dynamic simulation in aqueous solution. This study shows that the formed stable peptide–metal ion adducts in the gas phase by ESI‐MS does not imply the existence of analogous adducts in the aqueous phase. Comparing peptide–metal ion interaction under the gaseous MS and aqueous ACE conditions showed huge difference in binding behavior.  相似文献   

9.
The feasibility of using the affinity CE methodologies pre-equilibrium CZE and CE frontal analysis was tested on interaction systems exhibiting rapid on-and-off kinetics. Experimentally, the methodologies differ only with respect to the volume of sample introduced into the capillary. Pre-equilibrium CZE has been considered amendable to interactions with slow on-and-off kinetics only; however, it has recently been applied in studies of interactions with fast on-and-off kinetics. The effect of varying the sample volume introduced hydrodynamically into the capillary on the apparent degree of complexation was studied. For two different binding systems, the fraction of free analyte was found to be overestimated using pre-equilibrium CZE as compared to volumes providing plateau peak conditions as used with frontal analysis. Results indicate that frontal analysis conditions lead to more robust binding assays and thus more reliable data. The validity of data obtained by pre-equilibrium CZE may be low, thus the use of an experimental setup providing plateau peaks is highly recommended. It is suggested that the effect of altering the sample volume on the degree of binding should be investigated as part of method development and validation.  相似文献   

10.
《Electrophoresis》2018,39(4):569-580
A fast and precise affinity capillary electrophoresis (ACE) method has been applied to investigate the interactions between two serum albumins (HSA and BSA) and heparinoids. Furthermore, different free flow electrophoresis methods were developed to separate the species which appears owing to interaction of albumins with pentosan polysulfate sodium (PPS) under different experimental conditions. For ACE experiments, the normalized mobility ratios (∆R/Rf), which provided information about the binding strength and the overall charge of the protein‐ligand complex, were used to evaluate the binding affinities. ACE experiments were performed at two different temperatures (23 and 37°C). Both BSA and HSA interact more strongly with PPS than with unfractionated and low molecular weight heparins. For PPS, the interactions can already be observed at low mg/L concentrations (3 mg/L), and saturation is already obtained at approximately 20 mg/L. Unfractionated heparin showed almost no interactions with BSA at 23°C, but weak interactions at 37°C at higher heparin concentrations. The additional signals also appeared at higher concentrations at 37°C. Nevertheless, in most cases the binding data were similar at both temperatures. Furthermore, HSA showed a characteristic splitting in two peaks especially after interacting with PPS, which is probably attributable to the formation of two species or conformational change of HSA after interacting with PPS. The free flow electrophoresis methods have confirmed and completed the ACE experiments.  相似文献   

11.
A simple, rapid, sensitive and specific method using capillary electrophoresis (CE) coupled with electrostacking and amperometric detection (AD) has been developed for the simultaneous separation and determination of clenbuterol (CLB), terbutaline (TER), salbutamol (SAL) and formoterol (FMT). In this paper, the CE separation and AD conditions were investigated in detail. The optimum conditions were: pH 8.6 Na(2)B(4)O(7)-H(3)BO(3) buffer solution (20.0 mmol/L), 9 kV for the separation voltage, and 1000 mV (versus Ag/AgCl) for the detection potential. When the sample which was dissolved in 70% ACN-water mixture solution was injected 60 s by 15 kV electrokinetic injection, the best stacking effects was obtained. Under the optimum conditions, the enhancement factors of these beta(2)-agonists had been greatly improved more than 5500-fold compared with the conventional electrokinetic injection. And then an excellent linear response was obtained with LODs (S/N = 3) of 0.098, 0.024, 0.063 and 0.920 pmol/L for CLB, TER, SAL and FMT in urine, respectively. The precision was determined in both intra-day (n = 5) and inter-day (n = 15) assays, and the RSDs were not more than 2.1 and 3.4% for migration time and peak current, respectively. The proposed method has been applied to analyze human urine samples successfully.  相似文献   

12.
Interactions between heparin and tetraarginine in an acidic background electrolyte were investigated in capillary electrophoresis. The results showed that tetraarginine and heparin form a stable complex that migrates toward the anode immediately after coming into contact. When a zone of tetraarginine at a mg/mL concentration level passes through a zone of heparin at a μg/mL concentration level, tetraarginine is gradually removed by the formation of the complex that migrates in the opposite direction, thereby decreasing the tetraarginine peak area. The variation of the tetraarginine peak area as a function of the unfractionated heparin concentration was linear within the range 2–20 μg/mL, which enables us to detect and determine heparin concentrations undetectable with a UV detector. The same behavior was confirmed for low molecular weight heparin.  相似文献   

13.
Affinity capillary electrophoresis (ACE) has been applied to estimation of apparent binding constant of complexes of (R,S)‐enantiomers of selected acyclic nucleoside phosphonates (ANPs) with chiral selector β‐cyclodextrin (βCD) in aqueous alkaline medium. The noncovalent interactions of five pairs of (R,S)‐enantiomers of ANPs‐based antiviral drugs and their derivatives with βCD were investigated in the background electrolyte (BGE) composed of 35 or 50 mM sodium tetraborate, pH 10.0, and containing variable concentration (0–25 mM) of βCD. The apparent binding constants of the complexes of (R,S)‐enantiomers of ANPs with βCD were estimated from the dependence of effective electrophoretic mobilities of (R,S)‐enantiomers of ANPs (measured simultaneously by ACE at constant reference temperature 25°C inside the capillary) on the concentration of βCD in the BGE using different nonlinear and linear calculation methodologies. Nonlinear regression analysis provided more precise and accurate values of the binding constants and a higher correlation coefficient as compared to the regression analysis of the three linearized plots of the effective mobility dependence on βCD concentration in the BGE. The complexes of (R,S)‐enantiomers of ANPs with βCD have been found to be relatively weak – their apparent binding constants determined by the nonlinear regression analysis were in the range 13.3–46.4 L/mol whereas the values from the linearized plots spanned the interval 12.3–55.2 L/mol.  相似文献   

14.
The analysis is described for separating seven beta-adrenergic blocking agents (atenolol, celiprolol, clorprenaline, fenoterol, metoprolol, propranolol, terbutaline) and clenbuterol (sympathomimetic beta-2 receptor stimulating agonist, decongestant and bronchodilator, illicit anabolic used in athletics) by CE with UV detection. In order to simultaneously separate all analytes, Tris-H3PO4 solution was applied containing titanium dioxide nanoparticles (TiO2 NPs) as BGEs. The effects of important factors, such as concentration of TiO2 NPs, optimum pH, run buffer concentration, and separation voltage, were investigated so as to achieve best CE separation. The eight analytes could be well separated applying a separation voltage of 15 kV in 75 mM Tris-H3PO4 buffer at a pH of 2.40, containing 6.0 x 10(-6) g/mL TiO2 NPs. Under these optimal conditions, the RSDs for peak areas and for migration times were less than 2.7 and 2.3%, respectively. The detection limits were 0.1 microg/mL for celiprolol, 0.1 microg/mL for propranolol, 0.2 microg/mL for fenoterol, 1.0 microg/mL for atenolol, 1.0 microg/mL for clenbuterol, 1.0 microg/mL for clorprenaline, 1.0 microg/mL for metoprolol, and 1.0 microg/mL for terbutaline. The proposed method was successfully applied for the rapid CE determination of the frequently applied antihypertensive beta-blocking compounds atenolol, metoprolol, terbutaline, and propranolol in pharmaceutical tablets.  相似文献   

15.
Binding constants between the glycopeptides teicoplanin (Teic) and ristocetin (Rist) and their derivatives to D-Ala-D-Ala terminus peptides were determined by on-column receptor synthesis coupled to partial-filling affinity capillary electrophoresis (PFACE) or affinity capillary electrophoresis (ACE). In these techniques, the column is first partially filled with increasing concentrations of D-Ala-D-Ala terminus peptides. This is followed by plugs of buffer, antibiotic and two noninteracting standards, and acetic and/or succinic anhydride (and buffer in the case of ACE). The order of the reagent plugs containing the antibiotic and anhydride varies with the charge of the glycopeptide. Upon electrophoresis, the antibiotic reacts with the anhydride yielding a derivative of Teic or Rist. Continued electrophoresis results in the overlap of the derivatized antibiotic and the plug of D-Ala-D-Ala peptide. Analysis of the change in the relative migration time ratio (RMTR) of the new glycopeptide relative to the standards, as a function of the concentration of the D-Ala-D-Ala ligand yields a value for the binding constant K(b). The techniques described here can be used to assess how the derivatization of drugs alters their affinities for target molecules.  相似文献   

16.
This work details the determination of the minimal injection time of ligand required in flow-through partial-filling affinity capillary electrophoresis (FTPFACE) to estimate binding constants of ligands to receptors. Two model systems are examined in this study: carbonic anhydrase B (CAB, EC 4.2.1.1) and arylsulfonamides, and vancomycin from Streptomyces orientalis and d-Ala-d-Ala peptides. Using CAB, a minimal injection time of 0.07 min at high pressure was determined that provided for the accurate and reproducible measurement of binding constants. In the FTPFACE technique, the capillary is first partially filled with a zone of ligand followed by a sample plug containing receptor and non-interacting standards. Upon application of a voltage the receptor and standards flow into the zone of ligand where a dynamic equilibrium is achieved between receptor and ligand. Continued electrophoresis results in the receptor and standards flowing through the domain of the ligand plug prior to detection. Analysis of the change in the relative migration time ratio (RMTR) of the receptor, relative to the non-interacting standards, as a function of the concentration of ligand, yields a value for the binding constant. In the present study, variable injection times of 4-carboxybenzenesulfonamide (CBSA) were examined to determine the minimal injection time needed to establish an equilibrium between CAB and ligand. A mathematical relationship was derived that correlated injection time and ligand concentration to the change in RMTR and comparisons made between the experimental and calculated values. Binding constants were obtained for a series of arylsulfonamide ligands and d-Ala-d-Ala terminus peptides to CAB and Van, respectively. The results support the use of FTPFACE to estimate affinity constants under variable experimental conditions.  相似文献   

17.
Capillary electrophoresis methods were developed for the enantiomeric separation of 27 citalopram analogues. Sulfated β‐cyclodextrin was the most broadly selective and useful chiral selector. The separations of most of the citalopram analogue compounds reported in this work have not been reported previously. Excellent enantiomeric separations were obtained for 26 out of 27 compounds, and most of the separations were achieved within 10 min. The effects of chemical parameters such as chiral selector types, buffer types, chiral selector and buffer concentrations, buffer pH and organic modifiers on the separation were investigated. The influence of analyte structure on separation also was examined and discussed.  相似文献   

18.
A simple, economical and effective non-aqueous capillary electrophoresis separation and detection method was developed for the quantification of deoxyschizandrin and gamma-schizandrin in Schisandra chinensis Baill. and its medicinal preparations for the first time. After optimization of separation conditions, a buffer of 140 mmol/L sodium cholate in methanol was selected for separating the two analytes, but baseline separation of SA and SB in real samples was not obtained. Therefore second-order derivative electropherograms were applied for resolving overlapping peaks. Regression equations revealed good linear relationships (correlation coefficients 0.9975--0.9988) between peak heights in second-order derivative electropherograms and concentrations of the two analytes. The relative standard deviations (RSD) of the migration times and the peak height of the two constituents were in the ranges 0.62--0.79% and 0.25--2.17% (intra-day) and 1.43--2.06 and 4.08--5.72% (inter-day), respectively. The recoveries of the two constituents ranged from 93.2 to 103.0%. The results indicated that baseline separation of the analytes was sometimes hard to obtain in real samples and second-order derivative electropherograms were applicable for the resolution and analysis of overlapping peaks.  相似文献   

19.
Many cellular functions are regulated through protein isoforms. Changes in the expression level or regulatory dysfunctions of isoforms often lead to developmental or pathological disorders. Isoforms are traditionally analyzed using techniques such as gel- or capillary-based isoelectric focusing. However, with proper electro-osmotic flow (EOF) control, isoforms with small pI differences can also be analyzed using capillary zone electrophoresis (CZE). Here we demonstrate the ability to quickly resolve isoforms of three model proteins (bovine serum albumin, transferrin, alpha1-antitrypsin) in capillaries coated with novel dynamic coatings. The coatings allow reproducible EOF modulation in the cathodal direction to a level of 10(-9) m2V(-1)s(-1). They also appear to inhibit protein adsorption to the capillary wall, making the isoform separations highly reproducible both in peak areas and apparent mobility. Isoforms of transferrin and alpha1-antitrypsin have been implicated in several human diseases. By coupling the CZE isoform separation with standard affinity capture assays, it may be possible to develop a cost-effective analytical platform for clinical diagnostics.  相似文献   

20.
Drug-protein interactions are determining factors in the therapeutic, pharmacodynamic and toxicological drug properties. The affinity of drugs towards plasmatic proteins is apparently well established in bibliography. Albumin (HSA) especially binds neutral and negatively charged compounds; alpha(1)-acid glycoprotein (AGP) binds many cationic drugs, lipoproteins bind to nonionic and lipophilic drugs and some anionic drugs while globulins interact inappreciably with the majority of drugs. In this paper, the characterization of the interaction between cationic drugs, beta-blockers and phenotiazines towards HSA, AGP, and both HSA + AGP mixtures of proteins under physiological conditions by CE-frontal analysis is presented. Furthermore, the binding of these drugs to all plasmatic proteins is evaluated by using ultrafiltration and CE. The results indicate that the hydrophobic character of compounds seems to be the key factor on the interaction between cationic drugs towards proteins. In fact, hydrophobic basic drugs bind in great extension to HSA, while hydrophilic basic drugs present low interactions with proteins and bind especially to AGP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号