首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light emitting diodes (LEDs) based on GaN/InGaN material suffer from efficiency droop at high current injection levels. We propose multiple quantum well (MQW) GaN/InGaN LEDs by optimizing the barrier thickness and high–low–high indium composition to reduce the efficiency droop. The simulation results reflect a significant improvement in the efficiency droop by using barrier width of 10 nm and high–low–high indium composition in MQW LED.  相似文献   

2.
《Comptes Rendus Physique》2018,19(3):113-133
The realization of the first high-brightness blue-light-emitting diodes (LEDs) in 1993 sparked a more than twenty-year period of intensive research to improve their efficiency. Solutions to critical challenges related to material quality, light extraction, and internal quantum efficiency have now enabled highly efficient blue LEDs that are used to generate white light in solid-state lighting systems that surpass the efficiency of conventional incandescent lighting by 15–20×. Here we discuss the initial invention of blue LEDs, historical developments that led to their current state-of-the-art performance, and potential future directions for blue LEDs and solid-state lighting.  相似文献   

3.
陈依新  沈光地  郭伟玲  徐晨  李建军 《中国物理 B》2011,20(1):17204-017204
The reasons for low output power of AlGaInP Light Emitting Diodes (LEDs) have been analysed. LEDs with AlGaInP material have high internal but low external quantum efficiency and much heat generated inside especially at a large injected current which would reduce both the internal and external quantum efficiencies. Two kinds of LEDs with the same active region but different window layers have been fabricated. The new window layer composed of textured 0.5 μm GaP and thin Indium-Tin-Oxide film has shown that low external quantum efficiency (EQE) has serious impaction on the internal quantum efficiency (IQE), because the carrier distribution will change with the body temperature increasing due to the heat inside, and the test results have shown the evidence of LEDs with lower output power and bigger wavelength red shift.  相似文献   

4.
We present photoluminescence and electroluminescence of silicon nanocrystals deposited by plasma-enhanced chemical vapor deposition (PECVD) using nanocrystalline silicon/silicon dioxide (nc-Si/SiO2) superlattice approach. This approach allows us to tune the nanocrystal emission wavelength by varying the thickness of the Si layers. We fabricate light emitting devices (LEDs) with transparent indium tin oxide (ITO) contacts using these superlattice materials. The current-voltage characteristics of the LEDs are measured and compared to Frenkel-Poole and Fowler-Nordheim models for conduction. The EL properties of the superlattice material are studied, and tuning, similar to that of the PL spectra, is shown for the EL spectra. Finally, we observe the output power and calculate the quantum efficiency and power conversion efficiency for each of the devices.  相似文献   

5.
基于不同衬底材料高出光效率LED芯片研究进展   总被引:1,自引:1,他引:0  
提高LED芯片的出光效率是解决LED光源大功率化和可靠性的根本。根据LED芯片所用衬底材料的不同,总结了近年来提高GaN基LED出光效率的研究进展,介绍了新的设计思路、工艺结构与制备方法。并从材料结构和衬底选取方面,对LED芯片未来的发展趋势进行了展望。  相似文献   

6.
We present the fabrication details and performance characteristics of InGaN light-emitting diodes (LEDs) consisting of arrays of interconnected micro-pixels where each micro-pixel is nano-textured via nano-imprinting. We have taken the further step of embodying the pixels in a rhomboidal geometry. It is found that the power output of these nano-textured micro-LEDs with rhomboidal geometries is 57% higher than that of conventional square-shaped broad-area reference LEDs. The series resistance of the textured LEDs is reduced, owing to the multi-finger electrodes introduced. Furthermore, these LEDs can sustain higher operation current of up to 500 mA without encapsulation, suggesting improved thermal dissipation capability. Finally, the combined effects of surface texturing, micro-LED configuration, and geometric shaping on the light extraction are analyzed. It is found that the power enhancement by surface texturing, micro-pixellating and the rhomboidal geometry are 32%, 16%, and 9%, respectively, implying that surface texturing is the most effective contribution to increasing the light extraction efficiency in our design. The angular dependent far-field beam profile is also remarkably changed, compared with the standard Lambertian emission pattern of the conventional square-shaped LEDs. Substantial increase in the EL intensity is evident from both the top surface and the sidewall.  相似文献   

7.
InGaAlP/GaAs red light-emitting diodes (LEDs) with a sub-wavelength moth-eye structure at the output surface were demonstrated. A high-resolution polydimethylsiloxane (h-PDMS) casting material was used for the fabrication of the moth-eye structure from polymer template which was fabricated by hot embossing. The h-PDMS mold was subsequently used to transfer the nanostructure on the output surface of the LED by soft embossing. We succeeded in forming a close packed hexagonal array of hemispheres with 300 nm pitch, and 128 nm depth. With 10 mA driving current, the corresponding efficiency (cd/A) of moth-eye-structured light-emitting diodes was enhanced by 36% compared with those of non-patterned LEDs. The experimental results are in agreement with the results of a theoretical analysis of the effect of the moth-eye structure.  相似文献   

8.
郭江  赵晓凤 《物理》2004,33(9):641-645
蓝光或紫外激光在光电子学和光储存方面有广阔的应用,一直是国际上关注的前沿领域.而金刚石是最好的半导体紫外发光材料.特别是用于高温、高压、高功率、强辐射和强腐蚀环境中更能显示其优越性.目前人们已在实验上用同质外延、异质外延的方法制备了金刚石紫外发光二极管,观察到了较强的紫外光发射.人们尝试用金刚石与其他半导体材料结合的方法,成功地研制出了金刚石紫外发光二极管,开拓了该研究领域最新研究方向.文章对这些金刚石紫外发光器件研究的最新进展进行了评述.  相似文献   

9.
This letter presents a holographic photonic crystal (H-PhC) Al-doped ZnO (AZO) transparent Ohmic contact layer on p-GaN to increase the light output of GaN-based LEDs without destroying the p-GaN. The operating voltage of the PhC LEDs at 20 mA was almost the same as that of the typical planar AZO LEDs. While the resultant PhC LED devices exhibited significant improvements in light extraction, up to 1.22 times that of planar AZO LEDs without PhC integration. Temperature dependence of the integrated photoluminescence intensity indicates that this improvement can be attributed to the increased extraction efficiency due to the surface modification. These results demonstrate that the surface-treated AZO layer by H-PhCs is suitable for fabricating high-brightness GaN-based LEDs.  相似文献   

10.
The physical mechanisms leading to the efficiency droop of InGaN/GaN light-emitting diodes (LEDs) are theoretically investigated. We first discuss the effect of Auger recombination loss on efficiency droop by taking different Auger coefficients into account. It is found that the Auger recombination process plays a significant nonradiative part for carriers at typical LED operation currents when the Auger coefficient is on the order of 10−30 cm6 s−1. Furthermore, the InGaN/GaN multiple-quantum-well (MQW) LEDs with varied indium compositions in InGaN quantum wells are studied to analyze the wavelength-dependent efficiency droop. The simulation results show that the wavelength-dependent efficiency droop is caused by several different effects including non-uniform carrier distribution, electron overflow, built-in electrostatic field induced by spontaneous and piezoelectric polarization, and Auger recombination loss. These internal physical mechanisms are the critical factors resulting in the wavelength-dependent efficiency droop in InGaN/GaN MQW LEDs.  相似文献   

11.
Surface patterning of p-GaN to improve the light extraction efficiency of GaN-based blue light-emitting diodes(LEDs) has been investigated. Periodic nanopillar arrays on p-GaN have been fabricated by polystyrene(PS) nanosphere lithography; the diameter of the nanopillars can be tuned to optimize the electrical and optical properties of the LEDs. The electroluminescence intensity of the nanopillar-patterned LEDs is better than that of conventional LEDs; the greatest enhancement increased the intensity by a factor of 1.41 at a 20 mA injection current. The enhancements can be explained by a model of bilayer film on a GaN substrate. This method may serve as a practical approach to improve the efficiency of light extraction from LEDs.  相似文献   

12.
Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current progresses of GaN-based LEDs for light communications. The modulation bandwidth of GaN-based LEDs has been first improved by optimizing the LED epilayer structures and the modulation bandwidth of 73 MHz was achieved at the driving current density of 40 A/cm2 by changing the multi-quantum well structures. After that, in order to increase the current density tolerance, different parallel flip-chip micro-LED arrays were fabricated. With a high injected current density of ~7900 A/cm2, a maximum modulation bandwidth of ~227 MHz was obtained with optical power greater than 30 mW. Besides the increase of carrier concentrations, the radiative recombination coefficient B was also enhanced by modifying the photon surrounding environment based on some novel nanostructures such as resonant cavity, surface plasmon, and photonic crystals. The optical 3 dB modulation bandwidth of GaN-based nanostructure LEDs with Ag nanoparticles was enhanced by 2 times compared with GaN-based nanostructure LEDs without Ag nanoparticles. Our results demonstrate that using the QW-SP coupling can effectively help to enhance the carrier spontaneous emission rate and also increase the modulation bandwidth for LEDs, especially for LEDs with high intrinsic IQE. In addition, we discuss the progress of the faster color conversion stimulated by GaN-based LEDs.  相似文献   

13.
柔性LED是近年来照明及显示领域研究的热点之一.本文提出了一种新的基于有机硅胶(PDMS)制备的兼具超弹性和柔性的荧光薄膜,它不仅在-50~230℃这一较宽的温度范围内展现了良好的热稳定性,还保持了原料荧光粉的光学性能.所制备的透明PDMS基质膜和相应的荧光膜具有完全的柔性和超弹性,其最大伸长率分别高达400%与275%.此外,采用所制掺YAG荧光膜和普通商用1 W蓝光芯片简单封装的白光LED灯珠满足日常白光照明的应用要求,呈现出约6925 K的平均色温,约71的平均显色指数,115.7 lm/W左右的平均发光效率.最后,基于所提出荧光膜成膜工艺而制备的三色3×3柔性阵列显示,可以轻易被拉伸、卷曲和折叠,显示了它在柔性照明及显示器件方面具有应用价值和潜力.  相似文献   

14.
We employed the APSYS software to perform 3D electrical and ray-tracing simulations on micro-ring light-emitting diodes (LEDs) to verify previous experimental findings that they have higher extraction efficiency than micro-disk and broad area LEDs. 3D ray-tracing indicates the importance of inter-ring optical interactions. Furthermore we found that the higher light extraction efficiency is at the expense of reduced internal quantum efficiency (IQE) as injection current is increased.  相似文献   

15.
We report on an experimental set-up based on a confocal principle in order to acquire the light-intensity distribution (XZ and XY optical sections) of high-power LEDs. To be able to record the emission characteristics of millimeter-sized LEDs and to carry out the measurements with high precision the set-up consists of a moving stage and stationary rather than scanning optics, along with a lock-in amplifier in combination with a photodiode as a detection unit. The optical sections recorded provide valuable information on the light-intensity distribution and the light propagation both within transparent substrates (in case of flip-chip LEDs) as well as in the ambient of the LEDs. In order to evaluate the accuracy of the measurement technique, the impact of the numerical aperture of the objective lens on the shape of the optical sections recorded was tested for a set of different objective lenses. The method reported provides new opportunities for a direct determination not only of the amount but also the directionality of the light extraction from LEDs that are processed in order to improve the light-extraction efficiency.  相似文献   

16.
Kim H  Choi KK  Kim KK  Cho J  Lee SN  Park Y  Kwak JS  Seong TY 《Optics letters》2008,33(11):1273-1275
We report on the fabrication of high-efficiency vertical-injection GaN-based light-emitting diodes (LEDs) fabricated with integrated surface textures. An optical ray-tracing simulation shows that the high integration of surface textures can effectively enhance the light-extraction efficiency. The integrated surface textures are fabricated on the top surface of LEDs by generating hexagonal cones on the periodically corrugated surfaces of n-GaN. Compared to reference LEDs without textures, LEDs fabricated with integrated surface textures show an enhancement of the output power by a factor of 2.59, which is in agreement with the calculated results.  相似文献   

17.
The efficiency droop behaviors of GaN-based green light-emitting diodes (LEDs) are studied as a function of temperature from 300 K to 480 K. The overall quantum efficiency of the green LEDs is found to degrade as temperature increases, which is mainly caused by activation of new non-radiative recombination centers within the LED active layer. Meanwhile, the external quantum efficiency of the green LEDs starts to decrease at low injection current level (<1 A/cm2 ) with a temperature-insensitive peak-efficiency-current. In contrast, the peak-efficiency-current of a control GaN-based blue LED shows continuous up-shift at higher temperatures. Around the onset point of efficiency droop, the electroluminescence spectra of the green LEDs also exhibit a monotonic blue-shift of peak energy and a reduction of full width at half maximum as injection current increases. Carrier delocalization is believed to play an important role in causing the efficiency droop in GaN-based green LEDs.  相似文献   

18.
车振  张军  余新宇  陈哲 《应用光学》2015,36(4):606-611
为了提高GaN基LED芯片的光提取效率,以GaN基LED芯片为研究对象,建立了在蓝宝石衬底出光面和外延生长面上具有半球型图形的LED倒装芯片模型,并利用光学仿真软件对图形参数进行优化设计。实验结果表明:在蓝宝石衬底的出光面和外延生长面双面都制作凹半球型图形对芯片光提取效率的提高效果最好,并且当半球的半径为3 m,周期间距为7 m时,GaN基LED倒装芯片的最大光提取效率为50.8%,比无图形化倒装芯片的光提取效率提高了115.3%。  相似文献   

19.
GaN-based blue light emitting diodes(LEDs) have undergone great development in recent years,but the improvement of green LEDs is still in progress.Currently,the external quantum efficiency(EQE) of GaN-based green LEDs is typically30%,which is much lower than that of top-level blue LEDs.The current challenge with regard to GaN-based green LEDs is to grow a high quality In GaN quantum well(QW) with low strain.Many techniques of improving efficiency are discussed,such as inserting Al GaN between the QW and the barrier,employing prestrained layers beneath the QW and growing semipolar QW.The recent progress of GaN-based green LEDs on Si substrate is also reported:high efficiency,high power green LEDs on Si substrate with 45.2% IQE at 35 A/cm2,and the relevant techniques are detailed.  相似文献   

20.
The blue InGaN light-emitting diodes (LEDs), employing a lattice-compensated p-AlGaN/InGaN superlattice (SL) interlayer to link the last quantum barrier and electron blocking layer (EBL), are proposed and investigated numerically. The simulation results indicate that the newly designed LEDs have better hole injection efficiency, lower electron leakage, and smaller electrostatic fields in the active region over the conventional LEDs mainly attributed to the mitigated polarization-induced downward band bending. Furthermore, the markedly improved output power and efficiency droop are also suggested when the conventional LEDs corresponding to experiment data are replaced by the newly designed LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号