首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bi2-xPbxSr2(Y, Ce)2Cu2O10+δ, a new family of lead containing Bi-2222 compounds has been synthesized and effects of annealing in high pressure of oxygen studied. Lead-free Bi2Sr2(Y, Ce)2Cu2O10+δ synthesized under flowing oxygen is known to be non-superconducting, but annealing under high oxygen pressure (100 bar) at 500°C, induced superconductivity with Tc=25 K. On substitution of lead (x>0.4), the superconductivity appears even in samples synthesized under flowing oxygen (1 bar). Tc increases with oxygen annealing pressure for all compositions, and it also increases with Pb content at a given oxygen pressure. These findings are discussed.  相似文献   

2.
Thin films of Bi2Sr2CaCu2O8 and (Bi, Pb)2Sr2Ca2Cu3O10 have been prepared on monocrystalline (100) MgO substrates, using a laser ablation method with post annealing treatment. The influence of substrate temperature and oxygen pressure during deposition were investigated. SEM observations, EDS analysis, electric and magnetic measurements have been used to characterize the films. Superconducting “2212” films, with Tc(R = 0) at 80–83 K and Jc (50 K) up to 5 × 105 A/cm2, have been currently achieved, while Pb-doped “2223” films exhibit Tc as high as 110 K with Jc = 5 × 104 A/cm2 at 77 K. The effect of annealing at low temperature (350°C) in an argon flow has been studied for the 2212 phase, it shows the influence of the oxygen non-stoichiometry, i.e. of the hole carrier density upon Tc's which can be measured up to 89 K (zero resistance).  相似文献   

3.
Smooth, superconducting films of Bi2Sr2CaCu2O8+° have been prepared by reactive sputtering from elemental targets in the presence of ozone. The influence of substrate temperature, deposition rate, and ozone pressure on the resulting films are discussed. Films deposited on SrTiO3 substrates are c-axis oriented and featureless for substrate temperatures below 710°C. Above this temperature, small inclusions of CuO appear. Films on MgO exhibit mixed a-axis and c-axis orientation below about 710°C, and inclusions of CuO above this temperature. The temperature at which this transition occurs increases with increasing deposition rate. Tc increases and then decreases sharply with decreasing oxygen content. The oxygen partial pressure corresponding to the maximum Tc of 77 K is well above the thermodynamic stability limit for Bi2Sr2CaCu2O8+°, suggesting that an optimum carrier concentration has been achieved for these films.  相似文献   

4.
The Tc and oxygen content of TlBa2CaCu2Oy have been investigated by quenching experiments, in which the heat-treated samples were dropped into liquid nitrogen. The oxygen loss, v, of TlBa2CaCu2Oyov was determined by thermogravimetry in a nitrogen atmosphere using an oxygen-annealed specimen of TlBa2CaCu2Oyo and also by measurements of the weight differences before and after quenching. Tc increased from 80 K of the oxygen-annealed specimen up to about 110 K with increasing oxygen loss up to v = 0.035 by annealing at 500°C in a nitrogen atmosphere. Judging from the high Tc above 110 K achieved by a small oxygen loss about v = 0.035, the as-sintered oxygen-annealed TlBa2CaCu2Oyo specimen was in the over-doping state and probably has an oxygen vacancy of 7 − yo0.  相似文献   

5.
The effect of Bi2O3 on the glass transition temperature, electrical conductivity and structure of LiBO2 glass has been investigated. Tg vs. composition curve shows three different linear regions, while there is an overall decrease in Tg with the increase in Bi2O3 content. The slope of these three straight lines is in a decreasing order. These results are interpreted in terms of the increase in the number of non-bridging oxygen atoms, substitution of Bi-O bond in place of B-O bond and change in Li+ ion concentration. The conductivity vs. composition curve exhibits two maxima which are interpreted in terms of the structural modification effect of Bi2O3 on LiBO2 network and mixed-former effect, respectively. Results obtained from the XPS studies of the samples of composition x 0.005, have shown that the number of non-bridging oxygen atoms from B-O bond increases with the increase in Bi2O3 content. It has a maximum value at x = 0.003 where the conductivity has also exhibited a maximum value. Further increase of Bi2O3 content causes decrease in it. For higher Bi2O3 content (x * > 0.005), O 1s spectra of Bi2O3 has been separated out from that of Bi2O3. Bismuth ions have been substituted for boron ions as network former ions.  相似文献   

6.
Isothermal low-field AC susceptibility measurements have been used to analyze the intergranular critical current density Jc(T) on sintered, non-oriented YBa2Cu3O7−δ and Bi2Sr2CaCu2O8+δ ceramic samples at zero field. Below the critical temperature, potential variations, Jc(T) ≈ (1−tj)m with tj = T/Tj, have been found, Tj being the onset of grain's coherence, but with different exponents, supporting that different mechanisms limit the intergranular Jc values. Moreover, the effect of texture has been also considered on Bi2Sr2CaCu2O8+δ ceramics grown by the laser floating zone method, which have stronger intergranular junctions. Their high-temperature behaviour is limited by intrinsic effects, while at low temperatures the quality of the junctions is the limiting factor. The temperature dependence of the χ′(h0) extrapolation at zero filed has also been correlated with the evolution of the intergranular penetration depth, λJ(T).  相似文献   

7.
We have studied the stationary Josephson effect on YBa2Cu3O7−δ (Tc=90 K) and Bi2Sr2Ca1Cu2 O8 (Tc=80 K and 87 K for two samples of different origin) ceramic based junctions. The temperature dependence of the critical current near Tc has been found as Ic≈(Tc-T) for the Y-Ba-Cu-O samples indicating that they should be classified as S-N-I-N-S type junctions. The I-V curves of the Bi-Sr-Ca-Cu samples show the typical behaviour of S-I-S structures. Using Ambegaokar-Baratoff's theory for Bi2Sr2Ca1Cu2O8, the temperature dependence of the superconducting state gap Δ(T) was calculated and it was evaluated that 1.452Δ(0)/kBTc3.5.  相似文献   

8.
Superconducting transition temperature (Tc), Ca content and oxygen deficiency are studied on GaSr1.8Ca0.2Yb1xCaxCu2O7 (x≤0.35). Superconducting samples with Tc=52 K are prepared after the annealing at 20 MPa of oxygen. The Tc is reduced through a slight oxygen loss accompanied by annealing in air above 650°C. The oxygen loss suggests the presence of short Cu–O chains in the GaO4 slab. The formal valence of planar Cu required for the appearance of superconductivity depends on oxygen and Ca contents. The critical formal Cu valences are 2.105 and 2.125 for the samples annealed in air at 600°C and at 835°C, respectively. The values are higher than those of usual high-Tc superconductors. This can be explained by a high concentration of localized holes in the CuO5 slab.  相似文献   

9.
Experiments on the cuprate superconductors demonstrate that these materials may be viewed as a stack of Josephson junctions along the direction normal to the CuO2 planes (the c-axis). In this paper, we present a model which describes this intrinsic Josephson coupling in terms of incherent quasiparticle hopping along the c-axis arising from wave-function overlap, impurity-assisted hopping, and boson-assised hopping. We use this model to compute the magnitude and temperature T dependence of the resulting Josephson critical current jc(T) for s- and d-wave superconductors. Contrary to other approaches, d-wave pairing in this model is compatible with an intrinsic Josephson effect at all hole concentrations and leads to jc(T) T at low T. By parameterizing our theory with c-axis resistivity data from YBa2Cu3O7−δ (YBCO), we estimate jc(T) for optimally doped and underdoped members of this family. jc(T) can be measured either directly or indirectly through microwave penetration depth experiments, and current measurements on Bi2Sr2CaCu2O8 and La2−xSrxCuO4 are found to be consistent with s-wave pairing and the dominance of assisted hopping processes. The situation in YBCO is still unclear, but our estimates suggest that further experiments on this compound would be of great help in elucidating the validity of our model in general and the pairing symmetry in particular.  相似文献   

10.
We investigated the coexistence of superconductivity and antiferromagnetic order in the compound Er2O2Bi with anti-ThCr2Si2-type structure through resistivity, magnetization, specific heat measurements and first-principle calculations. The superconducting transition temperature Tc of 1.23 K and antiferromagnetic transition temperature TN of 3 K are observed in the sample with the best nominal composition. The superconducting upper critical field Hc2(0) and electron-phonon coupling constant λeph in Er2O2Bi are similar to those in the previously reported non-magnetic superconductor Y2O2Bi with the same structure, indicating that the superconductivity in Er2O2Bi may have the same origin as in Y2O2Bi. The first-principle calculations of Er2O2Bi show that the Fermi surface is mainly composed of the Bi 6p orbitals both in the paramagnetic and antiferromagnetic state, implying minor effect of the 4f electrons on the Fermi surface. Besides, upon increasing the oxygen incorporation in Er2OxBi, Tc increases from 1 to 1.23 K and TN decreases slightly from 3 K to 2.96 K, revealing that superconductivity and antiferromagnetic order may compete with each other. The Hall effect measurements indicate that hole-type carrier density indeed increases with increasing oxygen content, which may account for the variations of Tc and TN with different oxygen content.  相似文献   

11.
Superconducting behaviour of the tetragonal superconductor CaBaLaCu3O7−δ (Tc = 70 K) has been studied as a function of substitution of Ni and Zn for Cu. Both electrical resistivity and AC susceptibility measurements show that Tc decreases monotonically with increasing concentration of the substituent ion, within the composition range where the samples remain single phase, although Zn suppresses Tc more strongly than Ni for equivalent concentrations. It is argued that the suppression of Tc in this system cannot be explained by the Abrikosov-Gorkov mechanism alone.  相似文献   

12.
Superconducting samples with nominal composition Bi1.6Pb0.4Sr2Ca2Cu3Oδ were prepared by the conventional solid-state reaction technique. The samples have been characterized by X-ray diffraction, dc electrical resistivity, ac magnetic susceptibility and thermal conductivity. The X-ray diffraction studies were done at room temperature and the lattice constants of the material were determined by indexing all the peaks. All the above measurements show that, there exists two phases i.e. high-Tc (2 2 2 3) and low-Tc (2 2 1 2). The information obtained from dc electrical resistivity data agrees with ac magnetic susceptibility measurements. The onset temperature Tc (onset) and zero resistivity temperature Tc (R = 0) of the samples remains within the temperature 120 ± 1 K and 103 ± 1 K. Thermal conductivity has been measured with a transient plane source (TPS) technique in the temperature range 77–300 K. The estimation of the electrical resistivity change due to scattering by phonons and impurities has been discussed. An increase in thermal conductivity is observed above and below Tc (R = 0). The electron–phonon scattering time, phonon-limited mobility and the size of the electron–phonon constant are also calculated. Wiedemann–Franz law is applied to gain prediction about the magnitude of electronic and phonon contribution to the total thermal conductivity of the samples. It is observed that heat is mainly conducted by the phonons in this system.  相似文献   

13.
63Cu, 17O and 205Tl NMR have been performed in the high-Tc superconductor Tl2Ba2Ca2Cu3O10 whose Tc(max) is 127 K. The hole densities at Cu and oxygen sites in the CuO2 plane have been extracted from the nuclear quadrupole frequency νQ. The striking feature is that the Cu holes are significantly transferred to oxygen site due to strong hybridization between Cu and oxygen. From an analysis of T1 and T2G, it has been found that the spectral weight of the spin fluctuation is transferred to higher energy compared to YBa2Cu3O7, while the magnetic correlation length ξ does not differ much. Thus, it is suggested that the higher Tc is due to higher characteristic energy of spin fluctuations, i.e. the superconductivity is spin fluctuation mediated. The superconducting properties are consistently explained by a d-wave superconductivity model with a finite density of states (DOS) at the Fermi level. We show that the disorder of the Ca/TlO layer caused by the partial inter-substitution of Tl and Ca is responsible for the potential scattering to produce such a DOS. It is found that if such a potential scattering were absent, Tc would go up to 132 K which is quite close to the record Tc realized in the Hg based compound.  相似文献   

14.
The annealing characteristics and the superconducting properties of Tl2Ca2Ba2Cu3O10 thin films sputter-deposited onto yttrium- stabilized ZrO2 substrate at up to 500°C from two stoichiometric oxide targets are reported. The films deposited at 400–500°C were found to require a lower post-annealing temperature than the films deposited at lower temperatures to attain the highest Tc superconducting state, due to a more pronounced Ba diffusion toward the substrate as indicated by their secondary ion mass spectrometry depth profiles. The highest Tc achieved tends to degrade with increasing substrate temperatures, a zero resistance Tc of 121 and ≈90 K, respectively, being observed for the films deposited at -ambient temperature and at 500°C. The formation of the highest Tc phase (Tl2Ca2Ba2Cu3O10) generally is associated with a sheet type of crystal growth morphology with smooth and aligned surfaces which can be obtained only from the films capable of sustaining prolonged annealing at 900°C. Annealing at lower temperatures (≈860°C) results in the formation of rod or sphere type of morphologies with rough and randomly oriented crystals and the lower Tc phases such as Tl2Ca1Ba2Cu2O8.  相似文献   

15.
We have investigated the effect of Hg addition on the superconducting properties of BiSrCaCuO system. Polycrystalline samples with nominal composition Bi2Sr2−xHgxCa1Cu2Oy and Bi2Sr2−xHgxCa2Cu3Oy (x=0.3) were synthesized and used to investigate the phase evolution by XRD, superconducting behaviour by RT measurement and the structural grain boundary effects by SEM. From these measurements, it has been noticed that the phases obtained with both types of compositions are the same as Bi2212 but the Tc values are different. With additional annealing, Tc zero values were raised from 60 to 72 K in Bi2Sr2−xHgxCa1Cu2Oy and 64 to 92 K in Bi2Sr2−xHgxCa2Cu3Oy. Also, an improved grain boundary linkage has been observed by SEM for the 92 K sample.  相似文献   

16.
郭莉萍  杨万民  郭玉霞  陈丽平  李强 《物理学报》2015,64(7):77401-077401
本文通过在新固相源中添加Ni2O3的方法, 采用顶部籽晶熔渗生长工艺(TSIG)制备出组分为(1-x) (Gd2O3+1.2BaCuO2)+x Ni2O3、直径为20 mm的单畴GdBCO 超导块材(其中x = 0, 0.02, 0.06, 0.10, 0.14, 0.18, 0.30, 0.50 wt%), 并研究了Ni2O3的掺杂量x对样品的表面生长形貌、微观结构、临界温度Tc、磁悬浮力以及俘获磁通密度的影响. 研究结果表明, 当Ni2O3的掺杂量x在0–0.50 wt%的范围内时, 均可制备出单畴性良好的样品, 且Ni2O3的掺杂对样品中Gd211粒子的分布和粒径没有明显的影响. 在Ni2O3的掺杂量x从0增加到0.50 wt%的过程中, 样品的临界温度Tc呈现下降的趋势, 从x=0时的92.5 K下降到x=0.50 wt%时的86.5 K, 这是由于Ni3 +替代GdBCO晶体中Cu2 +所致; 样品磁悬浮力和俘获磁通密度均呈现先增大后减小的变化规律, x=0.14 wt%时, 磁悬浮力达到最大值34.2 N, x=0.10 wt%时, 俘获磁通密度达到最大值0.354 T. 样品磁悬浮力和俘获磁通密度的变化规律与Ni2O3的掺杂量x有密切关系, 只有当掺杂量x合适时, Ni3+对Cu2 +的替代既不会造成Tc的明显下降, 但又能产生适量的Ni3 +/Cu2+ 晶格畸变, 从而达到提高样品磁通钉扎能力和超导性能的效果.  相似文献   

17.
We have measured the resistivities of Al2O3-Bi2Sr1.8Ca1.2Cu2Oy and MgO-Bi2Sr1.8Ca1.2Cu2Oy composites with the nominal Bi2Sr1.8Ca1.2Cu2Oy volume fraction, 2212, ranging from 0.15 to 1.00. For the Al2O3-Bi2Sr1.8Ca1.2Cu 2Oy composites, we find for the samples with 2212≥0.6 that the superconducting transition temperature, Tc, is not disturbed by the addition of Al2O3. For 2212<0.3, no zero-resistivity state is observed. For the MgO-Bi2Sr1.8Ca1.2Cu2Oy composites, Tc is barely disturbed for the samples with ρ2212≥0.7. No superconducting state is observed for the samples with ρ2212<0.35. The variation of (300 K) with ρ2212 indicates a three-dimensional percolating Bi-Sr-Ca-Cu-O matrix occurring at ρ2212≈0.19 and ≈0.15 in Al2O3-Bi2Sr1.8Ca1.2 Cu2Oy and MgO-Bi2Sr1.8Ca1.2Cu2Oy, respectively. Both resistivity and magnetization measurements suggest that the reactions of Bi2Sr1.8Ca1.2Cu2Oy with MgO are weaker than with Al2O3.  相似文献   

18.
Samples with the nominal composition Bi2Sr2Ca1−xNaxCu2Oy (if with X = 0.05, 0.2, 0.4 and 0.5) were prepared by the solid state reaction method. The role of Na and the effect of various heat treatments in the 2212 composition were studied. From the X-ray diffraction data it is found that the samples annealed for longer duration have shown a single phase 2212. From the DC four-probe resistivity data, it was found that the Tc (zero) varies from 79 to 89 K. It is believed that doping with an alkali element would reduce the oxygen content due to monovalency and gives an effect similar to that during heat treatment under low oxygen pressure or quenching. The presence of sodium in the samples was confirmed by electron probe microanalysis.  相似文献   

19.
Magnetic susceptibility, X-ray diffraction and resistivity measurements of the system Bi1.4Pb0.6Sr2Ca2−xGaxCu3Oy are reported for 0 x 2. The high-Tc 2223 phase with a Tc of 107 K for x = 0 exists for x 0.3. The low-Tc 2212 phase with a Tc of 75 K for x = 0 exists for the full range of x. The highest values of the critical temperature and the largest volume fraction of the low-Tc phase in compounds with Ga occur for x = 0.5 ± 0.1. The identification of CaO by X-ray diffraction for x 0.6 indicates that Ga replaces Ca in the compound.  相似文献   

20.
The crystal structure including the cation distribution, of a polycrystalline sample of nominal composition Tl0.5Pb0.5Sr2Ca2Cu3O9 with Tc = 118.2 K has been determined using resonant synchrotron X-ray diffraction data collected at the Cu K, Tl LIII and Sr K edges and time-of-flight powder neutron diffraction data. No oxygen deficiency was observed, but cation disorder at all the non copper sites according to the formula (Tl0.60Pb0.40)(Sr1.60Ca0.40)(Ca1.93Tl0.07) Cu3O9 gives a mean hole concentration of 0.18(1) per Cu atom for the three CuO2 planes, consistent with the high Tc for this material. Analysis of five time-of-flight powder neutron diffraction data between 80 and 150 K have revealed a possible discontinuity in the variation of the c lattice parameter at Tc, due to an anomaly in the position of the apical oxygen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号