首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Subtype selective dopamine receptor ligands have long been sought after as therapeutic and/or imaging agents for the treatment and monitoring of neurologic disorders. We report herein on a combined structure- and ligand-based approach to explore the molecular mechanism of the subtype selectivity for a large class of D?-like dopamine receptor ligands (163 ligands in total). Homology models were built for both human D(?L) and D? receptors in complex with haloperidol. Other ligands, which included multiple examples of substituted phenylpiperazines, were aligned against the binding conformations of haloperidol, and three-dimensional quantitative structure activity relationship (3D-QSAR) analyses were carried out. The receptor models show that although D? and D? share highly similar folds and 3D conformations, the slight sequence differences at their extracellular loop regions result in the binding cavity in D? being comparably shallower than in D?, which may explain why some larger ligands bind with greater affinity at D? compared to D? receptors. The QSAR models show excellent correlation and high predictive power even when evaluated by the most stringent criteria. They confirm that the origins of subtype selectivity for the ligands arise primarily due to differences in the contours of the two binding sites. The predictive models suggest that while both steric and electrostatic interactions contribute to the compounds' binding affinity, the major contribution arises from hydrophobic interactions, with hydrogen bonding conferring binding specificity. The current work provides clues for the development of more subtype selective dopamine receptor ligands. Furthermore, it demonstrates the possibility of being able to apply similar modeling methods to other subtypes or classes of receptors to study GPCR receptor-ligand interactions at a molecular level.  相似文献   

2.
In search of a dopamine D2 and serotonin 5-HT3 receptors dual antagonist as a potential broad antiemetic agent, a number of benzamides were prepared from 4-amino-5-chloro-2-methoxybenzoic acid derivatives and 6-amino-1,4-dialkylhexahydro-1,4-diazepines and evaluated for their binding affinity for the dopamine D2 and the serotonin 5-HT3 receptors using rat brain synaptic and rat cortical membranes, respectively. From the results of both in vitro receptor binding and in vivo biological assays for the dopamine D2 receptor, 1-ethyl-4-methylhexahydro-1,4-diazepine ring was selected as an optimum amine moiety. Introduction of one methyl group on the nitrogen atom at the 4-position and/or modification of the substituent at the 5-position of the 4-amino-5-chloro-2-methoxybenzoyl moiety caused a marked increase in the dopamine D2 receptor binding affinity along with a potent 5-HT3 receptor binding affinity. Among the compounds, 5-chloro-N-(1-ethyl-4-methylhexahydro-1,4-diazepin-6-yl)-2-methoxy-4-methylaminobenzamide (82), 5-bromo (110), and 5-iodo (112) analogues exhibited a much higher affinity for the dopamine D2 receptor than that of metoclopramide (IC50=17.5-61.0 nM vs. 483 nM). In particular, 82 showed a potent antagonistic activity for both receptors in vivo tests. Optical resolution of the racemate 82 brought about a dramatic change in the pharmacological profile with the (R)-enantiomer exhibiting a strong affinity for both the dopamine D2 and the 5-HT3 receptors, while the corresponding (S)-enantiomer had a potent and selective serotonin 5-HT3 receptor binding affinity.  相似文献   

3.
Prediction of 3D structures of membrane proteins, and of G-protein coupled receptors (GPCRs) in particular, is motivated by their importance in biological systems and the difficulties associated with experimental structure determination. In the present study, a novel method for the prediction of 3D structures of the membrane-embedded region of helical membrane proteins is presented. A large pool of candidate models are produced by repacking of the helices of a homology model using Monte Carlo sampling in torsion space, followed by ranking based on their geometric and ligand-binding properties. The trajectory is directed by weak initial restraints to orient helices towards the original model to improve computation efficiency, and by a ligand to guide the receptor towards a chosen conformational state. The method was validated by construction of the β1 adrenergic receptor model in complex with (S)-cyanopindolol using bovine rhodopsin as template. In addition, models of the dopamine D2 receptor were produced with the selective and rigid agonist (R)-N-propylapomorphine ((R)-NPA) present. A second quality assessment was implemented by evaluating the results from docking of a library of 29 ligands with known activity, which further discriminated between receptor models. Agonist binding and recognition by the dopamine D2 receptor is interpreted using the 3D structure model resulting from the approach. This method has a potential for modeling of all types of helical transmembrane proteins for which a structural template with sequence homology sufficient for homology modeling is not available or is in an incorrect conformational state, but for which sufficient empirical information is accessible.  相似文献   

4.
吡唑并[1,5-α]吡啶类化合物的合成及其体外受体结合分析   总被引:1,自引:0,他引:1  
李谷才  孙磊  陈波  钟怀玉 《应用化学》2014,31(6):702-706
以吡唑并[1,5-α]吡啶-3-甲醛和N-甲酰基哌嗪为原料,经过还原胺化、水解和N-烷基化反应,合成了3-(4-苄基哌嗪-1-基甲基)吡唑并[1,5-α]吡啶、3-[4-(4-氯苄基)哌嗪-1-基甲基]吡唑并[1,5-α]吡啶和3-[4-(4-甲氧基苄基)哌嗪-1-基甲基]吡唑并[1,5-α]吡啶,通过1H NMR、ESI MS等技术手段对中间体及3个目标化合物进行了表征,并通过体外受体结合实验,测定3个目标化合物对多巴胺D4.2受体的亲和常数(Ki)分别为1.6、7.2、65 nmol/L;对D2受体的亲和常数分别为1920、5320和9800 nmol/L;对D3受体的亲和常数分别为1710、4270和5600 nmol/L。结果表明,3-(4-苄基哌嗪-1-基甲基)吡唑并[1,5-α]吡啶对多巴胺D4受体具有较高的亲和性与选择性,是多巴胺D4受体潜在的配基。  相似文献   

5.
Utilizing combinatorial synthesis and a preparative LC-MS automated chromatography system we have prepared and purified a library of 4-[2-(1,2,4-oxadiazolyl)]piperidines that were designed to be novel and selective dopamine D4 ligands. In one round of synthesis we identified N-4-chlorobenzyl-4-[2-(3-(2-thienyl)-1,2, 4-oxadiazolyl)]piperidine with a Kd of 5 nM for the human D4 receptor.  相似文献   

6.
The conjugate addition of five component Grignard reagents to methyl ecgonidine was used to create libraries of 3-substituted tropanes. By variation in the reagent combination in 10 such 5-membered sublibraries, a library of 25 compounds was made in a two-dimensional format. Screening of this library led to identification of two new potent monoamine transporter ligands that were subsequently synthesized. The most potent compound in this library was (1R,2S,3S,5S)-3-(3,4-dimethylphenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylic acid methyl ester, which inhibited dopamine transporter (hDAT) binding and reuptake with a K(i) of 26 and 20 nM, respectively. The conjugate addition to a 5-membered library of methyl ecgonidine analogues with variation of nitrogen substituent was also carried out and used to create 15 sublibraries of 25 compounds, which displayed 125 compounds in a three-dimensional format. From this 3D library, several potent dopamine transport inhibitors were likewise identified and synthesized. The most potent hDAT inhibitor discovered was (1R,2S,3S,5S)-3-(3,4-dimethylphenyl)-8-pentyl-8-azabicyclo[3.2.1]octane-2-carboxylic acid methyl ester. The study also showed that 3-alkyltropanes were poor inhibitors of monoamine transporters.  相似文献   

7.
The click chemistry-based backbone amide linker 1 was employed for an efficient and practical parallel synthesis of 1,2,3-triazole carboxamides when 1,3-dipolar cycloaddition was exploited for both the construction of a compound library and the functionalization of the resin. A three-step solid-phase-supported sequence included reductive amination by N-phenylpiperazinyl-substituted alkylamines, N-acylation by alkynoic acids, and azide-alkyne [3 + 2] cycloaddition. In most cases, cleavage under acidic conditions yielded the final products in excellent purities. A focused library of 60 target compounds was screened for G-protein coupled receptor binding employing eight biogenic amine receptors. Radioligand displacement experiments indicated a number of hit compounds revealing excellent receptor recognition when the methyl-substituted N-benzyltriazoles 29, 40, and 42 exhibited superior affinities for the alpha1 subtype (K(i) = 0.056-0.058 nM).  相似文献   

8.
Dopamine is one of the major neurotransmitters in the brain and body, and regulates a wide variety of functions via its binding with dopamine receptors. Abnormalities in dopamine receptors have also been found to be related to various neurological disorders. For such reason, dopamine receptors are among the key components to understanding the molecular mechanisms of many diseases, they are also the potential drug targets for the treatment of many diseases. Till now, five different dopamine receptors (D1-D5) have been identified in mammals, which are assumed to be evolved from a common ancestor after multiple gene duplication events and functional divergence. Thus, identifying the specific features of each dopamine receptor, will not only provide clues for understanding the functional differences between the receptors, but also help us to design drugs specific for a certain subtype of receptor. In this study, we investigated the functional divergence in dopamine receptors in representative vertebrate species by analyzing their molecular evolution features. Our results showed that the coefficients for type I functional divergence (θI) were significantly greater than 0 for all the pairwise comparisons between the five dopamine receptors, suggesting that type I functional divergence, i.e., altered functional constraints or different evolutionary rates, may have taken place at some amino acids in the receptors. We further identified 84 potential type I functional divergence peptide sites for the pairwise comparisons between the D1-like and D2-like are identified in total. When these sites were mapped to the 3D structure of dopamine receptors, most of them were included in ICL3, M6 and M7 domains. Especially, sixteen of these sites may be the major sites associated with the changes of properties between D1-like and D2-like receptors. These sites provide molecular basis for further studies such as dopamine receptor function exploration and subtype specific drug design and screening.  相似文献   

9.
Five different dopamine D3 receptors (D3DARs) models were created considering some suggested binding modes for D3DAR antagonists reported in earlier computational studies. Different hypotheses are justified because of the lack of experimental information about the putative site of interaction and are also due to the variability in scaffolds and size of D3DAR ligands. In this study 114 potent and selective D3DAR antagonists or partial agonists are used as key experimental information to discriminate the most reliable receptor model and to build a docking based 3D quantitative structure-activity relationship model able to indicate the ligand properties and the residues important for activity. The ability of this D3DAR model to discriminate the binding mode of different classes of ligands, showing a good quantitative correlation with their activity, encourages us to use it for screening novel lead compounds.  相似文献   

10.
Markus Bergauer 《Tetrahedron》2004,60(5):1197-1204
Chemo- and regioselective transformations of asparagine gave access to optically active 5- and 6-amino tetrahydroindolizines when the 3-aminobutyrolactone (S)-2 was employed as a key intermediate. The target compounds were approached by a sequential and regiocontrolled bis-electrophilic attack in the positions 2 and 3 of the pyrrole ring system. Receptor binding experiments showed stereocontrolled receptor recognition leading to the D3 selective agonist (S)-8 with D3 binding that is comparable to the natural neurotransmitter dopamine.  相似文献   

11.
The molecular alignments obtained from a previously reported pharmacophore model have been employed in a three-dimensional quantitative structure-activity relationship (3D QSAR) study, to obtain a more detailed insight into the structure-activity relationships for D(2) and D(4) receptor antagonists. The frequently applied CoMFA method and the related CoMSIA method were used. Statistically significant models have been derived with these two methods, based on a set of 32 structurally diverse D(2) and D(4) receptor antagonists. The CoMSIA and the CoMFA methods produced equally good models expressed in terms of q(2) values. The predictive power of the derived models were demonstrated to be high. Graphical interpretation of the results, provided by the CoMSIA method, brings to light important structural features of the compounds related to either low- or high-affinity D(2) or D(4) antagonism. The results of the 3D QSAR studies indicate that bulky N-substituents decrease D(2) binding, whereas D(4) binding is enhanced. Electrostatically favorable and unfavorable regions exclusive to D(2) receptor binding were identified. Likewise, certain hydrogen-bond acceptors can be used to lower D(2) affinity. These observations may be exploited for the design of novel dopamine D(4) selective antagonists.  相似文献   

12.
Aiming at the development of positron-emitting ligands with specific and high affinity toward dopamine D2 receptors in the central nervous system, we synthesized a new fluorinated eticlopride derivative. A fluorine atom was introduced at the C-4 position of the pyrrolidine ring of eticlopride, a dopamine D2 antagonist of the benzamide series. The in vitro binding affinity of this ligand toward the D2 receptor was found to be as potent as eticlopride, suggesting that the corresponding 18F-labelled compound may be useful as an in vivo radioligand for positron emission tomography.  相似文献   

13.
Annotation efforts in biosciences have focused in past years mainly on the annotation of genomic sequences. Only very limited effort has been put into annotation schemes for pharmaceutical ligands. Here we propose annotation schemes for the ligands of four major target classes, enzymes, G protein-coupled receptors (GPCRs), nuclear receptors (NRs), and ligand-gated ion channels (LGICs), and outline their usage for in silico screening and combinatorial library design. The proposed schemes cover ligand functionality and hierarchical levels of target classification. The classification schemes are based on those established by the EC, GPCRDB, NuclearDB, and LGICDB. The ligands of the MDL Drug Data Report (MDDR) database serve as a reference data set of known pharmacologically active compounds. All ligands were annotated according to the schemes when attribution was possible based on the activity classification provided by the reference database. The purpose of the ligand-target classification schemes is to allow annotation-based searching of the ligand database. In addition, the biological sequence information of the target is directly linkable to the ligand, hereby allowing sequence similarity-based identification of ligands of next homologous receptors. Ligands of specified levels can easily be retrieved to serve as comprehensive reference sets for cheminformatics-based similarity searches and for design of target class focused compound libraries. Retrospective in silico screening experiments within the MDDR01.1 database, searching for structures binding to dopamine D2, all dopamine receptors and all amine-binding class A GPCRs using known dopamine D2 binding compounds as a reference set, have shown that such reference sets are in particular useful for the identification of ligands binding to receptors closely related to the reference system. The potential for ligand identification drops with increasing phylogenetic distance. The analysis of the focus of a tertiary amine based combinatorial library compared to known amine binding class A GPCRs, peptide binding class A GPCRs, and LGIC ligands constitutes a second application scenario which illustrates how the focus of a combinatorial library can be treated quantitatively. The provided annotation schemes, which bridge chem- and bioinformatics by linking ligands to sequences, are expected to be of key utility for further systematic chemogenomics exploration of previously well explored target families.  相似文献   

14.
[structure: see text] The recognition of dopamine in water has been achieved with tripodal oxazoline-based artificial receptors, capable of providing a preorganized hydrophobic environment by rational design, which mimics a hydrophobic pocket predicted for a human D2 receptor. The receptors show an amphiphilic nature owing to the presence of hydrophilic sulfonate groups at the periphery of the tripodal oxazoline ligands, which seems to contribute in forming the preorganized hydrophobic environment. The artificial receptors recognized dopamine hydrochloride in water with reasonable selectivity among various organoammonium guests examined. The observed binding behavior of the receptors was explained by evoking guest inclusion in the preorganized hydrophobic pocket-like environment and not by simple ion-pairing interactions. The rationally predicted 1:1 inclusion binding mode was supported by binding studies such as with a reference receptor that cannot provide a similar binding pocket, Job and VT-NMR experiments, electrospray ionization mass analysis, and guest selectivity data. This study implies that an effective hydrophobic environment can be generated even from an acyclic, small molecular artificial receptor. Such a preorganized hydrophobic environment, as being utilized in biological systems, can be effectively used as a complementary binding force for the recognition of organoammonium guests such as dopamine hydrochloride in water.  相似文献   

15.
The kinetic and pharmacological characteristics of 3H-spiroperidol binding sites were studied in slide mounted sections of rat forebrain, and optical binding conditions were defined. Using the receptor macroautoradiographic techniques with tritium-sensitive LKB sheet film, the distribution of dopamine (D2) receptor was determined in slices including striatum of rat brain. The autoradiograms were analyzed using Video Digitizer System combined with video camera and minicomputer, and the subtraction images were obtained. These studies suggest that this quantitative receptor macroautoradiography might be useful in the explanation of etiology in the field of neuro-psychiatric diseases and the fundamental studies of positron emission computed tomography, since this method has several advantages over in vivo autoradiography and in vitro receptor assay.  相似文献   

16.
17.
The recently published crystal structure of the D3 dopamine receptor shows a tightly packed region of aromatic residues on helices 5 and 6 in the space bridging the binding site and what is thought to be the origin of intracellular helical motion. This highly conserved region also makes contacts with residues on helix 3, and here we use double mutant cycle analysis and unnatural amino acid mutagenesis to probe the functional role of several residues in this region of the closely related D2 dopamine receptor. Of the eight mutant pairs examined, all show significant functional coupling (Ω > 2), with the largest coupling coefficients observed between residues on different helices, C3.36/W6.48, T3.37/S5.46, and F5.47/F6.52. Additionally, three aromatic residues examined, F5.47, Y5.48, and F5.51, show consistent trends upon progressive fluorination of the aromatic side chain. These trends are indicative of a functionally important electrostatic interaction with the face of the aromatic residue examined, which is likely attributed to aromatic-aromatic interactions between residues in this microdomain. We also propose that the previously determined fluorination trend at W6.48 is likely due to a sulfur-π interaction with the side chain of C3.36. We conclude that these residues form a tightly packed structural microdomain that connects helices 3, 5, and 6, thus forming a barrier that prevents dopamine from binding further toward the intracellular surface. Upon activation, these residues likely do not change their relative conformation, but rather act to translate agonist binding at the extracellular surface into the large intracellular movements that characterize receptor activation.  相似文献   

18.
19.
20.
We report here an exhaustive and complete conformational study on the conformational potential energy hypersurface (PEHS) of dopamine (DA) interacting with the dopamine D2 receptor (D2-DR). A reduced 3D model for the binding pocket of the human D2-DR was constructed on the basis of the theoretical model structure of bacteriorhodopsin. In our reduced model system, only 13 amino acids were included to perform the quantum mechanics calculations. To obtain the different complexes of DA/D2-DR, we combined semiempirical (PM6), DFT (B3LYP/6-31G(d)), and QTAIM calculations. The molecular flexibility of DA interacting with the D2-DR was evaluated from potential energy surfaces and potential energy curves. A comparative study between the molecular flexibility of DA in the gas phase and at D2-DR was carried out. In addition, several molecular dynamics simulations were carried out to evaluate the molecular flexibility of the different complexes obtained. Our results allow us to postulate the complexes of type A as the "biologically relevant conformations" of DA. In addition, the theoretical calculations reported here suggested that a mechanistic stepwise process takes place for DA in which the protonated nitrogen group (in any conformation) acts as the anchoring portion, and this process is followed by a rapid rearrangement of the conformation allowing the interaction of the catecholic OH groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号