首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
2-磺酸基-4-甲氧基苯基重氮氨基偶氮苯(MOSDAA)和Cu(II)反应生成疏水性络合物后,被萃取到Triton X-114非离子表面活性剂胶束相中,火焰原子吸收光谱法测定其中的铜,建立了浊点萃取预富集-火焰原子吸收光谱法测定铜的方法。反应体系的pH、MOSDAA和Triton X-114的浓度、平衡温度及时间等实验条件被优化。在选择的实验条件下,方法的检出限为1.1 ng/mL(3σ),对浓度为0.1μg/mL的Cu(II)溶液平行测定6次,相对标准偏差为1.9%。方法已用于小米和水样中痕量铜的测定。  相似文献   

2.
建立以二乙基二硫代氨基甲酸钠(DDT℃)为配位剂、TritonX-114为表面活性剂的浊点萃取-火焰原子吸收测定荔枝和桂圆肉中痕量铜的方法.研究了溶液pH值、配位剂类型与浓度、表面活性剂类型与浓度、平衡温度和平衡时间等实验条件对浊点萃取效率的影响.在最优的实验条件下,该方法测定铜的检出限为0.8μg/L,相对于传统火焰...  相似文献   

3.
浊点萃取-火焰原子吸收光谱法测定水样中痕量铜的研究   总被引:19,自引:0,他引:19  
提出了浊点萃取火焰原子吸收光谱法测定痕量铜的新方法。详细探讨了溶液pH,试剂浓度等实验条件对浊点萃取及测定灵敏度的影响,在最佳下,富集50mL样品溶液,用火焰原子吸收光谱法测定,铜的检测限为0.35μg/L,铜的富集倍率为71倍。方法用于自来水、河水及海水中痕量铜的测定。  相似文献   

4.
以双硫腙作为络合剂、聚乙二醇辛基苯基醚(TritonX-100)为非离子表面活性剂,建立浊点萃取-火焰原子吸收光谱测定尿液中痕量铅的方法。探讨了络合剂用量、平衡时间、pH值、TritonX-100用量、冰浴时间等因素对萃取效率的影响。结果表明:该方法对铅的最大富集倍数约为40倍,检出限为0.06μg·L-1(n=11)。回收率在96.7%~101%,线性范围为0~1.00μg·mL-1。利用该方法测定尿液中痕量铅的含量,结果令人满意。  相似文献   

5.
浊点萃取(Cloud Point Extraction,CPE)是近年来出现的一种新兴的环保型的液-液萃取技术,它不使用挥发性有机溶剂,对环境的影响较小[1].它以中性表面活性剂胶束水溶液的溶解性和浊点现象为基础,通过改变试验参数如溶液pH值、温度等引发相分离,将疏水性物质与亲水性物质分离.它具有经济、安全、高效、简便等优点,已广泛应用于生命科学和环境科学研究中[2-4],特别是在痕量金属元素的分离富集方面取得了很大的成功[5-7].  相似文献   

6.
浊点萃取-火焰原子吸收光谱法测定菠菜中镁、锌和铜   总被引:1,自引:0,他引:1  
在pH 8.0缓冲溶液中,以8-羟基喹啉为螯合剂,镁、锌和铜均与8-羟基喹啉生成螯合物,加入Triton X-100表面活性剂用浊点萃取分离富集菠菜样品中镁、锌和铜。分取部分表面活性剂相用乙醇定容至25mL,所得溶液直接用火焰原子吸收光谱法进行测定。对影响浊点萃取的因素和共存离子的干扰等进行了试验并予以优化。镁、锌和铜的检出限(3s/k)依次为0.057,0.064,0.032mg.L-1。应用此法测定了大叶菠菜和小叶菠菜中3种元素的含量,在两种样品中用标准加入法进行方法的回收试验,测得镁的回收率在93.3%~100.5%之间;锌的回收率在91.7%~97.9%之间;铜的回收率在94.0%~107.1%之间。  相似文献   

7.
研究了以双硫腙为络合剂,以非离子型表面活性剂Triton X-100为萃取剂的浊点萃取-火焰原子吸收光谱法(CPE-FAAS)测定痕量金(Ⅲ)的新方法。详细考察了溶液的pH值、络合剂和表面活性剂浓度、平衡温度和时间等条件对浊点萃取效果的影响。该方法的线性范围为0.05~0.8μg/mL,检出限为7.9 ng/mL,相对标准偏差为4.12%(n=11),回收率在98.0%~102.0%之间,用于矿渣中金的测定,结果满意。  相似文献   

8.
建立了以1-(2-吡啶偶氮)-2-萘酚(PAN)为络合剂、Triton X-100为表面活性剂的浊点萃取-原子吸收光谱法测定痕量铜的分析方法。探讨了溶液的pH、络合剂和表面活性剂用量、平衡温度和平衡时间等因素对浊点萃取的影响。最佳条件下,线性方程为Y=0.1049X+0.0016,相关系数为0.9988,检出限为0.7μg/L,相对偏差为2.3%,富集倍数为15倍。用该方法对几种塑料制品中的痕量铜进行测定,回收率为97.5%~101.9%。  相似文献   

9.
研究了以1-(2-吡啶偶氮)-2-萘酚(PAN)为络合剂,以非离子型表面活性刺Triton X-100为萃取剂的浊点萃取分离富集-火焰原子吸收光谱法测定痕量钯的新方法。详细考察了溶液的pH、络合剂和表面活性剂浓度、平衡温度和时间等条件对浊点萃取效果的影响。该方法对钯的检出限为30.8ng/mL,相对标准偏差(RSD)为2.1%(n=10),回收率在97.8%-106.6%之间。可用于催化剂中Pd(Ⅱ)的测定。  相似文献   

10.
浊点萃取-火焰原子吸收光谱法测定样品中的痕量钴   总被引:3,自引:0,他引:3  
研究了基于表面活性剂Triton X-114和络合剂吡咯烷二硫代氨基甲酸铵(APDC)浊点萃取钴的样品前处理方法.优化了浊点萃取条件参数,包括pH值、Triton X-114用量、APDC浓度、平衡温度及时间等,建立了浊点萃取-火焰原子吸收光谱法测定痕量钴的方法.该法的检测限(3σ)为2.6μg/L,相对标准偏差RSD为6.2%(n=7,c=200μg/L).该法成功地应用于海带、维生素B12注射液等样品中钴的测定.  相似文献   

11.
建立火焰原子吸收光谱法测定粗锌中的铜含量。采用硝酸–酒石酸溶解样品,并以其为测定溶液介质,检测波长为324.7 nm,以水为参比,采用空气–乙炔火焰以原子吸收光谱仪进行测定。在优化的实验条件下,铜的质量浓度在0.10~2.50μg/m L范围内与吸光度有良好线性关系,相关系数为0.999 7,方法检出限为0.01μg/m L。测定结果的相对标准偏差为1.0%~3.0%(n=11),样品加标回收率为97%~102%。该方法具有灵敏度高,干扰少,重现性好等优点,适用于铜含量在0.001%~0.50%之间的粗锌中铜的测定。  相似文献   

12.
以1-(2-吡咯偶氮)-2-萘酚(PAN)为络合剂络合水样中的痕量铜,以磁性石墨烯(G)纳米材料为固相萃取吸附剂,建立了测定水样中痕量铜的磁性固相萃取/火焰原子吸收分光光度法。此方法将磁性石墨烯比表面积大、吸附性能好的优点与Fe3O4纳米粒子的磁性相结合,采用的磁性固相萃取避免了传统固相萃取中离心和过滤等繁琐的操作步骤。对影响G-Fe3O4萃取效率的实验因素进行了优化。在优化实验条件下,对铜离子的富集倍数为80.4倍,线性范围为0.5~100μg/L,相关系数(r)为0.998 1,检出限为0.067μg/L,相对标准偏差为2.1%~5.2%。此方法成功地应用于矿泉水、自来水、公园湖水中铜离子含量的测定,其加标回收率为94%~103%。结果表明,该磁性石墨烯纳米材料G-Fe3O4对水样品中铜的PAN络合物具有较高的富集能力。  相似文献   

13.
浊点萃取-氢化物发生原子吸收光谱法测痕量汞   总被引:2,自引:0,他引:2  
提出了浊点萃取预富集氢化物发生-原子吸收光谱法测定痕量汞的新方法。详细探讨了溶液pH值、表面活性剂浓度、平衡时间等因素对浊点萃取效果的影响。在优化的实验条件下,该法对汞的富集倍数为20倍,检出限为0.039μg/L,相对标准偏差(RSD)为4.8%(n=11)。所建立的方法用于天然水中痕量汞的测定,分析结果满意。  相似文献   

14.
将浊点萃取与火焰原子吸收光谱法联用对水样中铬的形态进行检测,在pH 7.7条件下,络合剂1-(2-吡啶偶氮)-2-萘酚(PAN)只与Cr(Ⅲ)络合而不与Cr(Ⅵ)反应,实现了环境水样品中Cr(Ⅲ)与Cr(Ⅵ)的分别测定。对影响浊点萃取效率的主要因素如酸度、试剂量、反应温度、时间等进行了研究,在最佳条件下,铬富集倍数为20倍。Cr(Ⅲ)的质量浓度在0.005~1.0 mg/L内与吸光度线性良好,线性相关系数r=0.999 8。用该方法对0.30 mg/L的Cr(Ⅲ)标准溶液平行测定11次,测定结果的相对标准偏差为2.9%,检出限为5.74μg/L。将该法用于自来水、河水、三亚温泉水、工厂污水水中铬的形态分析并进行加标回收试验,回收率为90.0%~106.5%。该法富集倍数高、重现性好,测定结果准确可靠。  相似文献   

15.
建立了火焰原子吸收光谱法测定锡阳极泥中铜元素的分析方法。对锡阳极泥样品,采用盐酸、硝酸、高氯酸分解,氢溴酸挥发除去锡和锑的溶样方式,火焰原子吸收光谱仪测定铜,测定范围为1%~5%,并考察了仪器条件、不同酸浓度、干扰元素对铜含量测定的影响。实验结果表明铜的检出限为0.013μg/mL,加标回收率为95.5%~104%,相对标准偏差为0.81%~2.1%,方法准确度高、精密度好,能够很好地满足锡阳极泥中铜元素的测定。  相似文献   

16.
A sensitive and simple method for flame atomic absorption spectrometry (FAAS) determination of antimony species after separation/preconcentration by cloud point extraction (CPE) has been developed. When the system temperature is higher than the cloud point extraction temperature, the complex of antimony (III) with N-benzoyl-N-phenyhydroxylamine (BPHA) can enter the surfactant-rich phase, whereas the antimony (V) remains in the aqueous phase. Antimony (III) in surfactant-rich phase was analyzed by FAAS and antimony (V) was calculated by subtracting of antimony (III) from the total antimony after reducing antimony (V) to antimony (III) by L-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of BPHA and Triton X-114, equilibration temperature and time, were investigated systematically. Under optimized conditions, the detection limits (3σ) were 1.82 ng mL−1 for Sb(III) and 2.08 ng mL−1 for Sb(total), and the relative standard deviations (RSDs) were 2.6% for Sb(III) and 2.2% for Sb(total). The proposed method was applied to the speciation of antimony species in artificial seawater and wastewater, and recoveries in the range of 95.3–106% were obtained by spiking real samples. This technique was validated by means of reference water materials and gave good agreement with certified values.  相似文献   

17.
浊点萃取-石墨炉原子吸收光谱法测定环境样品中的痕量镉   总被引:21,自引:0,他引:21  
研究了浊点萃取-石墨炉原子吸收光谱法(GFAAS)测定痕量镉的新方法,利用表面活性剂Triton X-100和络合剂1-(2-吡啶偶氮)-2-萘酚(PAN)对镉进行浊点萃取。详细探讨了影响浊点萃取及测定灵敏度的因素。优化条件为:0.25 mL 30%NaC l,pH 8.5,0.50 mL、4.0×10-4mol/L PAN,0.2 mL 1.0%TritonX-100。在最佳条件下,镉的富集倍率为50倍,检出限为5.9 ng/L,RSD为2.1%。该方法用于环境样中痕量镉的富集和测定,结果令人满意。  相似文献   

18.
采用氢氟酸-硝酸分解试样,用高氯酸蒸发至冒烟除去硅;在硝酸介质(5%)中,采用火焰原子吸收光谱法于324.8nm波长处测定工业硅中铜含量。方法能有效地消除硅的干扰,测量结果相对标准偏差在5%以内,加标回收率在99.0%~102%。方法具有操作简便、快速、容易掌握、成本低的优点。  相似文献   

19.
浊点萃取-电热原子吸收光谱法分析铬的形态   总被引:21,自引:0,他引:21  
朱霞石  江祖成  胡斌  李铭芳 《分析化学》2003,31(11):1312-1316
提出了测定铬形态的新方法——浊点萃取-电热原子吸收光谱法(PPE-ETAAS)。该法基于利用非离子表面活性剂Triton X-100的浊点现象,当加热至其浊点时,溶液分为两相,Cr(Ⅲ)与8-羟基喹啉形成的疏水性螯合物进入富胶束相中,从而实现与Cr(Ⅵ)的分离。在本法中,8-羟基喹啉既作为化学分离,富集剂,又作为ETAAS测定中的化学改进剂。对影响浊点萃取分离的主要因素进行了详细的研究。在最优实验条件下,方法测定Cr(Ⅲ)的检出限为0.023μg/L;相对标准偏差为1.1%(C=2.0μg/L,n=6)。本法具有简便、灵敏、富集倍数高和避免使用有机溶剂的优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号