共查询到19条相似文献,搜索用时 62 毫秒
1.
以聚乙二醇(PEG-400)为还原剂,AgNO3为前驱体,采用浸渍-还原法合成氧化石墨烯-Ag纳米粒子(GO-AgNP)复合物,再通过共混法制备氧化石墨烯-Ag纳米粒子/聚酰亚胺(GO-AgNP/PI)混合基质膜,用于苯/环己烷混合物的渗透汽化分离。使用透射电子显微镜、红外吸收光谱、拉曼光谱、热失重以及X射线光电子能谱等分析表征GO-AgNP复合物、GO-AgNP/PI混合基质膜的形貌和结构;探讨了Ag掺杂量对GO-AgNP复合物的结构以及GO-AgNP/PI混合基质膜的结构和渗透汽化性能的影响。结果发现,Ag+被还原形成AgNP的同时,GO失去了部分含氧官能团;Ag掺杂破坏了GO的结构,使其无序度增加,但改善了GO-AgNP复合物在混合基质膜中的分散性,提升了GO-AgNP/PI混合基质膜的苯/环己烷渗透汽化性能。然而过量的Ag掺杂将使GO片层上产生Ag粒子团聚,从而降低混合基质膜的渗透汽化性能。当Ag掺杂量为15%时,GO-AgNP/PI混合基质膜渗透汽化性能最佳,渗透通量为1 404 g·m-2·h-1,分离因子可达36.2。 相似文献
2.
以聚乙二醇(PEG-400)为还原剂,Ag NO3为前驱体,采用浸渍-还原法合成氧化石墨烯-Ag纳米粒子(GO-Ag NP)复合物,再通过共混法制备氧化石墨烯-Ag纳米粒子/聚酰亚胺(GO-Ag NP/PI)混合基质膜,用于苯/环己烷混合物的渗透汽化分离。使用透射电子显微镜、红外吸收光谱、拉曼光谱、热失重以及X射线光电子能谱等分析表征GO-Ag NP复合物、GO-Ag NP/PI混合基质膜的形貌和结构;探讨了Ag掺杂量对GO-Ag NP复合物的结构以及GO-Ag NP/PI混合基质膜的结构和渗透汽化性能的影响。结果发现,Ag+被还原形成Ag NP的同时,GO失去了部分含氧官能团;Ag掺杂破坏了GO的结构,使其无序度增加,但改善了GO-Ag NP复合物在混合基质膜中的分散性,提升了GO-Ag NP/PI混合基质膜的苯/环己烷渗透汽化性能。然而过量的Ag掺杂将使GO片层上产生Ag粒子团聚,从而降低混合基质膜的渗透汽化性能。当Ag掺杂量为15%时,GO-Ag NP/PI混合基质膜渗透汽化性能最佳,渗透通量为1 404 g·m-2·h-1,分离因子可达36.2。 相似文献
3.
一种可溶性聚酰亚胺的合成与性能研究 总被引:10,自引:6,他引:10
选用三苯二醚四酸二酐 (HQDPA)和二甲基二苯甲烷二胺 (DMMDA)为单体 ,在NMP中通过低温溶液缩聚 化学亚胺化法合成了高分子量可溶性聚醚酰亚胺PI(HQDPA DMMDA) .通过FT IR、WAXD、TG DTG以及DSC等手段对聚酰亚胺的结构和性能进行了表征 .结果表明 ,合成的PI为无规高分子结构 ,平均分子链间距为 0 5 16 3nm ;易溶于N 甲基吡咯烷酮、N ,N 二甲基乙酰胺和四氢呋喃等极性溶剂中 ;其 10 %的分解温度为5 2 8℃ ,玻璃化转变温度Tg 为 2 5 1℃ ;断裂伸长率为 2 4 % ,断裂强度为 10 7MPa ;2 5℃时 ,PI均质膜的透H2 系数为 3 80 9Barrer ,H2 N2 、H2 CH4 的理想分离系数为 16 6 9、2 14 0 ;其透N2 、O2 、CO2 和CH4 系数均在 0 0 18~0 5 76Barrer之间 相似文献
4.
有机液体优先透过渗透汽化膜及其过程 总被引:10,自引:0,他引:10
本文回顾了近0年来有机液体优先透过渗透汽化膜的研究与发展状况。包括各种欲分离体系及膜材料的选择、膜的渗透汽化特征表征、影响膜分离性能的各种因素,以及近年来有机液体优先透过PV膜的一些研究成果。 相似文献
5.
采用两步原位水热合成法在新型多孔二氧化硅陶瓷管上成功合成出高性能的silicalite-1分子筛膜, 60℃时乙醇/水的分离系数达到了84, 透量达到了0.56 kg/(m2·h). 利用扫描电子显微镜(SEM)对其进行了表征; 研究了不同合成条件对silicalite-1分子筛膜乙醇/水分离性能的影响. 实验结果表明, 在相同的合成条件下, 利用甘油-水的混合溶液填充陶瓷管载体后, 可以提高膜的平均透量约26%. 多次活化结果表明, 二氧化硅载体上合成的分子筛膜以活化速率4℃/min升温到400℃并活化5 h, 仍然保持原来的分离选择性. 由此说明, 二氧化硅载体更适合高性能silicalite-1分子筛膜的制备. 相似文献
6.
7.
将过氯乙烯(CPVC)作为渗透汽化膜材料,用于分离乙醇/水溶液,研究了膜对水和乙醇的吸附溶解性能,对乙醇/水溶液的分离性能,分离温度对膜分离性能的影响。发现过氯乙烯膜优先透水,对乙醇/水溶液选择性高而透量较小。膜的稳定性较好。 相似文献
8.
莫来石管上丝光沸石膜的合成与渗透汽化性能 总被引:1,自引:0,他引:1
采用不添加有机模板剂、配比为n_(Na_2O):n_(Al_2O_3):n_(SiO_3):n_(H_2O)=0.25:0.015~0.1:1:15~60溶胶,在涂有晶种的多孔莫来石管上水热合成出了丝光沸石膜。制备的膜经XRD和SEM表征。考察了合成时间、硅铝比、水硅比和硅源等因素对膜生长及其性能的影响。合成时间的延长有利于丝光沸石c轴方向的优先生长,然而优先取向生长膜层并未提高膜在水/乙醇分离体系中的渗透通量和选择性。优化条件下合成的膜具有较高的渗透汽化性能,在348 K、水/乙醇(10/90,W/W)混合溶液中的渗透通量和分离因子分别为0.70 kg·m~(-2)·h~(-1)。和860。基于XRD和SEM表征结果,高的渗透汽化性能可归结于在莫来石支撑层与较为疏松的表面晶体层之间形成的致密中间层。 相似文献
9.
本文介绍了离子交换膜的渗透汽化研究工作。从离子交换膜的吸附溶解性、离子特性等几个方面论述了渗透汽化过程的分高性能及可能的传递机理。 相似文献
10.
针对传统聚酰亚胺(PI)分离膜对气体渗透系数低的问题,本文利用3,3',4,4'-二苯酮四羧酸二酐(BTDA)、甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI)和四甲基苯二甲基二异氰酸酯(TMDXI)成功制备了新型可溶性PI分离膜。研究结果表明含四甲基侧基的TMXDI单体对PI分离膜的分子堆积结构、自由体积及分离膜的溶解性、力学性能及耐热稳定性等特性有显著的影响。随着TMDXI含量的增加,PI分离膜由脆性断裂转变为韧性断裂;同时,PI膜对不同气体分子的渗透性能均显著提高,当TMDXI添加量为30 mol%时,分离膜对CO2的渗透系数提高了144%。 相似文献
11.
Five kinds of polyimides were synthesized using five dianhydrides (including 2,2-bis[4-(3,4-dicarboxyphenoxy)- phenyl] propane dianhydride (BPADA),3,3',4,4'-diphenylsulfone-tetracarboxylic dianhydride (DSDA),4,4'- (hexafluoroisopropylidene)-diphthalic anhydride (6FDA),1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA), and 4,4'-oxydiphthlic dianhydride (ODPA)) and 2,2-bis[4-(4-aminophenoxy)phenyl] hexafluoropropane (BDAF) via the two- step method that included polyaddition to form the polyamic aci... 相似文献
12.
设计并合成了一种含氟苯乙炔苯胺封端剂4-苯乙炔基-3-三氟甲基苯胺(3FPA),使用3FPA与4,4′-(六氟异丙基)双邻苯二甲酸二酐(6FDA)和对苯二胺(p-PDA)制备了计算分子量为5000的聚酰亚胺树脂3FPA-PI-50,并对树脂溶液、树脂模塑粉和树脂模压件的制备与性能进行了研究,实验结果表明3FPA-PI-50树脂溶液具有良好的储存稳定性,成型后树脂具有优异的热性能和热氧化稳定性,后固化后树脂玻璃化转变温度为404℃,5%热失重温度大于530℃.此外树脂具有低的介电常数和吸水率. 相似文献
13.
一种含酚酞结构聚酰亚胺的合成及性能表征 总被引:1,自引:0,他引:1
通过酚酞的硝化和还原,得到了一种新型的含酞结构和酚羟基的二胺单体,通过二胺和4,4'-六氟亚异丙基二(邻苯二甲酸酐)(6FDA)缩聚并高温亚胺化,得到了相应的含酚羟基聚酰亚胺PI-HP.利用1H-NMR、FTIR、GPC及热分析表征了PI-HP的结构和热性能,利用紫外-可见光谱表征了其透明性.结果表明,PI-HP在部分极性有机溶剂中如DMF、THF、丙酮中具有良好的溶解性,具有较高的热稳定性并在可见光区域具有较好的透明性,其含羟基可进一步修饰用于制备各种功能材料. 相似文献
14.
以o-羟基苯乙酮、对氯硝基苯和苯甲醛为原料,通过亲核取代反应、改进的Chichibabin反应以及水合肼催化还原合成了一种新型含邻位取代单元及吡啶环的芳香二胺4-苯基-2,6-双[3-(4-氨基苯氧基)苯基]吡啶(o,p-PAPP).以N,N-二甲基甲酰胺(DMF)为溶剂,将o,p-PAPP分别与3,3',4,4'-二苯醚四羧酸二酐(ODPA)、2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐(BPADA)、3,3',4,4'-二苯酮四甲酸二酐(BTDA)及均苯四甲酸二酐(PMDA)通过常规的两步法,合成了4种聚酰亚胺.用FTIR、DSC、TGA、XRD、溶解性测试、UV-Vis和荧光光谱对聚合物的结构和性能进行了表征.FTIR结果表明,所得的聚合物在1780,1720和1380cm-1左右出现了聚酰亚胺的特征吸收峰.实验所得的PI能很好地溶解于常见有机溶剂(如DMF,DMAC,DMSO,NMP,THF,CHCl3),在氮气氛中,PI的10%失重温度(T10)为444.2~467.5℃,800℃时的残余质量(Rw)为49.6%~58.3%.同时PI分子主链中的吡啶环结构使其具有良好的紫外光吸收性能,经HCl质子化后,在460 nm附近出现非常强的荧光发射峰. 相似文献
15.
一种主链含光敏基团聚酰亚胺的合成与表征 总被引:1,自引:0,他引:1
通过4,4′-二羟乙基查尔酮与1,2,4-苯三酸酐酰氯反应,得到了一种新型的主链含查尔酮的二酐单体,通过二酐和2,2-双(3(-氨基-4(-羟基苯基)六氟丙烷缩聚并高温亚胺化,得到了一种新型的主链含查尔酮,侧链含羟基的光敏聚酰亚胺,并通过1H-NMR、FTIR、GPC及热分析表征了得到的聚酰亚胺的结构和热性能.这种聚酰亚胺在极性溶剂中具有较好的溶解性,并具有较高的热稳定性,在紫外光照射下,能进行[2+2]的环加成反应. 相似文献
16.
聚酰亚胺/聚N-乙烯吡咯烷酮分子复合物的合成和表征 总被引:2,自引:0,他引:2
由原位缩聚制备了刚性高分子聚酰亚胺(PI)和柔性基体聚N-乙烯吡咯烷附(PVP)的分子复合物,并由实验证明了中间体聚酰胺酸(PA)和聚乙烯吡咯烷酮大分子之间存在的酸一碱相互作用.这种相互作用促进了混容性,使聚酰亚胺能以分子水平或接近分子水平分散在聚毗咯烷酮的基体之中.聚酰亚胺/聚N-乙烯吡咯烷团分子复合物的薄膜呈透明性,在整个组成范围内只有一个Tg,显示单相行为。当PI含量<20%时,SEM相片呈现均相形貌,看不到PI微晶.广角X-ray衍射图表明PI特征结晶峰消失,和无定形的PVP完全混容.当PI含量>40%,SEM显示有均匀分布的、棒状PI微晶存在.通过分子复合,即使PI含量为10%,聚N-乙烯吡咯烷酮不再溶于乙醇,耐热性也有提高. 相似文献
17.
可溶性聚酰亚胺的制备及其在液晶显示器上的潜在应用 总被引:4,自引:0,他引:4
以3,5-二硝基苯甲酰氯和4-羟基联苯为原料,合成了功能性二胺单体3,5-二氨基苯甲酸联苯酯(DABBE).用此单体与3,3′-二甲基-4,4′-二氨基二苯甲烷(DMMDA)、3,3′,4,4′-二苯醚四甲酸二酐(ODPA)共缩聚,采用低温缩聚-化学亚胺化的方法,通过调节共聚物组成制备了5种聚酰亚胺(PI).利用FT-IR、NMR、UV-Vis与DSC等手段对合成二胺单体及聚酰亚胺进行了结构表征和性能测试;研究了其溶解性能、透光性能、取向性能和耐热性能.结果表明,5种聚酰亚胺均可溶于NMP、DMF等极性溶剂;对液晶分子取向时的预倾角随DABBE的比例增加而增大,可达1.8°.但当DABBE的比例增加时,PI的分子量降低,将影响其成膜性能.此外,实验所得的PI透过率大于80%,玻璃化转变温度在220℃以上. 相似文献
18.
以乙酰氨基苯酚为原料,经过BrCF2CF2Br氟烷基化、Zn催化脱卤、热环化二聚,以及水解去保护,合成了一种含全氟环丁烷环的二胺单体1,2,3,3,4,4-六氟-1,2-双[4-(氨基)苯氧基]环丁烷.用该单体分别与酯环二酐双环[2·2·1]辛烷-2,3,5,6-四羧基2,3,5,6-二酐(BHDA)、芳香性二酐3,3′,4,4′-联苯四酸二酐(BPDA)和3,3′,4,4′-二苯酮四酸二酐(BTDA)通过“一步法”制备了3种新型含全氟环丁烷环聚酰亚胺.通过粘度测试、溶解性实验、FT-IR、热失重分析(TGA)和差热扫描量热(DSC)分析等手段,对所合成的聚酰亚胺的结构与性能进行了表征.结果显示该类聚酰亚胺可溶于大多数常用极性有机溶剂,热分解温度高于480℃,其中两种聚合物玻璃化温度低于150℃,表明含全氟环丁烷环聚酰亚胺具有良好的溶解性和可加工性. 相似文献
19.
由原位缩聚制备了刚性高分子聚酰亚胺(PI)和柔性基体聚N-乙烯吡咯烷附(PVP)的分子复合物,并由实验证明了中间体聚酰胺酸(PA)和聚乙烯吡咯烷酮大分子之间存在的酸一碱相互作用.这种相互作用促进了混容性,使聚酰亚胺能以分子水平或接近分子水平分散在聚毗咯烷酮的基体之中.聚酰亚胺/聚N-乙烯吡咯烷团分子复合物的薄膜呈透明性,在整个组成范围内只有一个Tg,显示单相行为。当PI含量<20%时,SEM相片呈现均相形貌,看不到PI微晶.广角X-ray衍射图表明PI特征结晶峰消失,和无定形的PVP完全混容.当PI含量>40%,SEM显示有均匀分布的、棒状PI微晶存在.通过分子复合,即使PI含量为10%,聚N-乙烯吡咯烷酮不再溶于乙醇,耐热性也有提高. 相似文献