首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ANi(AsF6)3 (A = O2+, NO+, NH4+) compounds could be prepared by reaction between corresponding AAsF6 salts and Ni(AsF6)2. When mixtures of AF (A = Li, Na, K, Rb, Cs) and NiF2 are dissolved in aHF acidified with an excess of AsF5 the corresponding AAsF6 and Ni(AsF6)2 were formed in situ. For A = Li and Na only mixtures of AAsF6 and Ni(AsF6)2 were obtained, while for A = K, Rb and Cs, the final products were ANi(AsF6)3 (A = K-Cs) compounds contaminated with AAsF6 (A = K-Cs) and Ni(AsF6)2.ANi(AsF6)3 (A = H3O+, O2+, NO+, NH4+ and K+) compounds are structurally related to previously known H3OCo(AsF6)3. The main features of the structure of these compounds are rings of NiF6 octahedra sharing apexes with AsF6 octahedra connected into infinite tri-dimensional network. In this arrangement cavities are formed where single charged cations are placed.In O2Ni(AsF6)3 the vibrational band belonging to O2+ vibration is found at 1866 cm−1, which is according to the literature data one of the highest known values, and it is only 10 cm−1 lower than the value for free O2+.  相似文献   

2.
[Cu(XeF2)6](SbF6)2 crystallizes in the rhombohedral symmetry with a = 1003.6(2) pm, c = 2246.5(12) pm at 200 K and Z = 3, space group (No. 148). [Zn(XeF2)6](SbF6)2 is isostructural to [Cu(XeF2)6](SbF6)2 with a = 1007(2) pm and c = 2243(6) pm. The structures are characterized by isolated homoleptic [M(XeF2)6]2+ (M = Cu, Zn) cations and of [SbF6] octahedra.Reactions of M(SbF6)2 (M = Cu, Zn) with XeF2 in anhydrous hydrogen fluoride (aHF) and reactions of MF2 with Xe2F3SbF6 in aHF always yield a mixture of [M(XeF2)6](SbF6)2, Xe2F3SbF6 and MF2.  相似文献   

3.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

4.
The small di- and triatomic molecules [SN]+ and [SNS]+ have shown versatile chemistries and [SNS]+ is an important starting reagent for many sulfur-nitrogen radicals. However, their chemistry is limited to the more polar solvents (e.g. SO2). In this work an attempt is made to increase their solubility in less polar solvents by exchange of the usual [MF6] (M = As, Sb) anions by the large and weakly coordinating [Al(OC(CF3)3)4]. As expected the metathesis reactions of [SN][AsF6] and [SNS][SbF6] with Li[Al(OC(CF3)3)4] in liquid sulfur dioxide resulted in the formation of the insoluble Li[SbF6], which is the driving force for these metathesis reactions. The characterization of the compounds by IR and multinuclear NMR revealed that [SNS]+ formed a [Al(OC(CF3)3)4] salt in a clean reaction. A preliminary crystal structure of [SNS][Al(OC(CF3)3)4] is presented. The solubility of [SNS][Al(OC(CF3)3)4] in CH2Cl2 is significantly increased with respect to the corresponding [MF6] salts, and potentially opens up new areas of [SNS]+ chemistry. The reaction of the more reactive [SN]+ with Li[Al(OC(CF3)3)4] was less clear. Multinuclear NMR and IR spectra were consistent with the formation of [SN][Al(OC(CF3)3)4], which also showed significant decomposition.  相似文献   

5.
New compounds of the type M2(H2F3)(HF2)2(AF6) with M = Ca, A = As and M = Sr, A = As, P) were isolated. Ca2(H2F3)(HF2)2(AsF6) was prepared from Ca(AsF6)2 with repeated additions of neutral anhydrous hydrogen fluoride (aHF). It crystallizes in a space group P4322 with a = 714.67(10) pm, c = 1754.8(3) pm, V = 0.8963(2) nm3 and Z = 4. Sr2(H2F3)(HF2)2(AsF6) was prepared at room temperature by dissolving SrF2 in aHF acidified with AsF5 in mole ratio SrF2:AsF5 = 2:1. It crystallizes in a space group P4322 with a = 746.00(12) pm, c = 1805.1(5) pm, V = 1.0046(4) nm3 and Z = 4. Sr2(H2F3)(HF2)2(PF6) was prepared from Sr(XeF2)n(PF6)2 in neutral aHF. It crystallizes in a space group P4122 with a = 737.0(3) pm, c = 1793.7(14) pm, V = 0.9744(9) nm3 and Z = 4. The compounds M2(H2F3)(HF2)2(AF6) gradually lose HF at room temperature in a dynamic vacuum or during being powdered for recording IR spectra or X-ray powder ray diffraction patterns. All compounds are isotypical with coordination of nine fluorine atoms around a metal center forming a distorted Archimedian antiprism with one face capped. This is the first example of the compounds in which H2F3 and HF2 anions simultaneously bridge metal centers forming close packed three-dimensional network of polymeric compounds with low solubility in aHF. The HF2 anions are asymmetric with usual F?F distances of 227.3-228.5 pm. Vibrational frequency (ν1) of HF2 is close to that in NaHF2. The anion H2F3 exhibits unusually small F?F?F angle of 95.1°-97.6° most probably as a consequence of close packed structure.  相似文献   

6.
LiMF6 (M = Ta, Nb) was prepared by the reaction between LiF and MF5 (M = Ta, Nb) in F2 gas. Pure LiMF6 (M = Ta, Nb) salts were obtained by using the reaction at temperatures higher than 473 K under 80 kPa (F2) for 24 h. The x values in LiMFx (M = Ta, Nb) were confirmed as 5.7-6.0 by XRD-Rietveld analysis. Results showed that LiMF6 (M = Ta, Nb) has a trigonal structure (, Z = 3). The respective lattice parameters of LiTaF6 and LiNbF6 are a0 = 0.533 nm, c0 = 1.362 and a0 = 0.532 nm, c0 = 1.360. The equivalent conductivities of both LiMF6 (M = Ta, Nb) in propylene carbonate (PC) are equal at 15.2 Ω−1 cm2 mol−1 at 0.01 mol dm−3. The electrochemical potential window of TaF6 is 7.0 V, which is 0.4 and 0.2 V wider, respectively, than those of BF4 and PF6.  相似文献   

7.
Quantum chemical calculations at the B3LYP/TZVP level of theory have been carried out for the initial steps of the addition reaction of ethylene to OsO3(CH2). The calculations predict that there are two reaction channels with low activation barriers. The kinetically and thermodynamically most favored reaction is the [3+2]O, C addition which has a barrier of only 2.3 kcal mol−1. The [3+2]O, O addition has a slightly higher barrier of 6.5 kcal mol−1. Four other reactions of OsO3(CH2) with C2H4 have significantly larger activation barriers. The addition of ethylene to one oxo group with concomitant migration of one hydrogen atom from ethylene to the methylene ligand yields thermodynamically stable products but the activation energies for the reactions are 16.7 and 20.9 kcal mol−1. Even higher barriers are calculated for the [2+2] addition to the OsO bond (32.6 kcal mol−1) and for the addition to the oxygen atom yielding an oxiran complex (41.2 kcal mol−1). The activation barriers for the rearrangement to the bisoxoosmaoxirane isomer (36.3 kcal mol−1) and for the addition reactions of the latter with C2H4 are also quite high. The most favorable reactions of the cyclic isomer are the slightly exothermic [2+2] addition across the OsO bond which has an activation barrier of 46.6 kcal mol−1 and the [3+2]O, O addition which is an endothermic process with an activation barrier of 44.3 kcal mol−1.  相似文献   

8.
There has been speculations on the structures of TiF4 polymeric complexes {TiF4L}n (L = molecular donor) for several decades, however no structurally characterized examples have been reported. In this work the complex {TiF4(PhCN)}3 was isolated from a solution of TiF4 in PhCN (donor number DN = 11.9 kcal mol−1) as well as from the mixtures PhCN/CH2Cl2 and PhCN/toluene and characterized by X-ray, IR, NMR, EI-MS. The structure of the complex {TiF4(PhCN)}3 can be regarded as formed by combining three face-TiF3(PhCN)(μ-F) units, containing octahedrally coordinated titanium centers surrounded by three terminal fluorine atoms on the face of the octahedron and the bridging fluorine atoms in cis-positions with respect to each other. The structure of {TiF4(PhCN)}3 represents the first example of a trimeric pseudo pentahalide MX4L (M = Ti, Zr, X = halogen, D = ligand), a class of potentially interesting Lewis acids. The characterization of {TiF4(PhCN)}3 by 19F NMR revealed that in solution it dissociated to a mixture of [TiF3(PhCN)3]+, TiF4(PhCN)2 and oligomers including [Ti4F18]2− and {TiF4(PhCN)}n. The existence of oligomeric complexes containing face-{TiF3(PhCN)3−n(μ-F)n} (n = 1-3) fragments was established by one- and two-dimensional variable temperature 19F NMR. In contrast, TiF4 has a low solubility in SO2, because the donor strength of SO2 (DN = 6.5 ± 2.2 kcal mol−1) is too weak to fully convert polymeric TiF4 into soluble TiF4-SO2 donor-acceptor adducts. TiF4 and MeCN (DN = 14.1 kcal mol−1) formed only the molecular complex TiF4(MeCN)2, characterized by preliminary X-ray structure, IR and EI-MS. Thus mononuclear donor-acceptor complexes TiF4L2 can only be isolated from MeCN and stronger basic solvents.  相似文献   

9.
Temperature dependence of infrared and Raman spectra of the two isostructural salts [Cp2Mo(dmit)]PF6 and [Cp2Mo(dmit)]SbF6 is studied. At room temperature the physical properties of both compounds are very similar but at lower temperatures they undergo phase transitions associated with anion ordering, which are surprisingly different. The phase transitions in [Cp2Mo(dmit)]PF6 salt at T1 = 120 K and T2 = 89 K have no important influence on infrared and Raman spectra, while the phase transition in [Cp2Mo(dmit)]SbF6 salt at T1 = 175 K causes a splitting of Raman bands assigned to the CC stretching at about 1334 cm−1 and the in-plane Mo(dmit) ring deformation at about 353 cm−1, and also an infrared band at about 939 cm−1 related to the C-S stretching. The splitting of vibrational bands demonstrates a clear distortion of [Cp2Mo(dmit)]+ cations in the [Cp2Mo(dmit)]SbF6 salt. This molecular distortion is related to a lattice distortion providing thus a good argument for applicability of the compressible model of the anion ordering transition.  相似文献   

10.
The kinetics of the radical reactions of CH3 with HCl or DCl and CD3 with HCl or DCl have been investigated in a temperature controlled tubular reactor coupled to a photoionization mass spectrometer. The CH3 (or CD3) radical, R, was produced homogeneously in the reactor by a pulsed 193 nm exciplex laser photolysis of CH3COCH3 (or CD3COCD3). The decay of CH3/CD3 was monitored as a function of HCl/DCl concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature, typically from 188 to 500 K. The rate constants of the CH3 and CD3 reactions with HCl had strong non-Arrhenius behavior at low temperatures. The rate constants were fitted to a modified Arrhenius expression k = QA exp (−Ea/RT) (error limits stated are 1σ + Students t values, units in cm3 molecule−1 s−1): k(CH3 + HCl) = [1.004 + 85.64 exp (−0.02438 × T/K)] × (3.3 ± 1.3) × 10−13 exp [−(4.8 ± 0.6) kJ mol−1/RT] and k(CD3 + HCl) = [1.002 + 73.31 exp (−0.02505 × T/K)] × (2.7 ± 1.2) × 10−13 exp [−(3.5 ± 0.5) kJ mol−1/RT]. The radical reactions with DCl were studied separately over a wide ranges of temperatures and in these temperature ranges the rate constants determined were fitted to a conventional Arrhenius expression k = A exp (−Ea/RT) (error limits stated are 1σ + Students t values, units in cm3 molecule−1 s−1): k(CH3 + DCl) = (2.4 ± 1.6) × 10−13 exp [−(7.8 ± 1.4) kJ mol−1/RT] and k(CD3 + DCl) = (1.2 ± 0.4) × 10−13 exp [−(5.2 ± 0.2) kJ mol−1/RT] cm3 molecule−1 s−1.  相似文献   

11.
The vaporization of DyI3(s) was investigated in the temperature range between 833 and 1053 K by the use of Knudsen effusion mass spectrometry. The ions DyI2+, DyI3+, Dy2I4+, Dy2I5+, Dy3I7+, and Dy3I8+ were detected in the mass spectrum of the equilibrium vapor. The gaseous species DyI3, (DyI3)2, and (DyI3)3 were identified and their partial pressures determined. Enthalpies and entropies of sublimation resulted according to the second- and third-law methods. The following sublimation enthalpies at 298 K were determined for the gaseous species given in brackets: 274.8±8.2 kJ mol−1 [DyI3], 356.0±11.3 kJ mol−1 [(DyI3)2], and 436.6±14.6 kJ mol−1 [(DyI3)3]. The enthalpy changes of the dissociation reactions (DyI3)2=2 DyI3 and (DyI3)3=3 DyI3 were obtained as ΔdH°(298)=193.3±5.6 and 390.3±13.0 kJ mol−1, respectively.  相似文献   

12.
Specific heat capacities (Cp) of polycrystalline samples of BaCeO3 and BaZrO3 have been measured from about 1.6 K up to room temperature by means of adiabatic calorimetry. We provide corrected experimental data for the heat capacity of BaCeO3 in the range T < 10 K and, for the first time, contribute experimental data below 53 K for BaZrO3. Applying Debye's T3-law for T → 0 K, thermodynamic functions as molar entropy and enthalpy are derived by integration. We obtain Cp = 114.8 (±1.0) J mol−1 K−1, S° = 145.8 (±0.7) J mol−1 K−1 for BaCeO3 and Cp = 107.0 (±1.0) J mol−1 K−1, S° = 125.5 (±0.6) J mol−1 K−1 for BaZrO3 at 298.15 K. These results are in overall agreement with previously reported studies but slightly deviating, in both cases. Evaluations of Cp(T) yield Debye temperatures and identify deviations from the simple Debye-theory due to extra vibrational modes as well as anharmonicity. The anharmonicity turns out to be more pronounced at elevated temperatures for BaCeO3. The characteristic Debye temperatures determined at T = 0 K are Θ0 = 365 (±6) K for BaCeO3 and Θ0 = 402 (±9) K for BaZrO3.  相似文献   

13.
The compounds, Cd(BF4)(TaF6) and Cd(BF4)(BiF6), have been synthesized and characterized by single-crystal X-ray diffraction and Raman spectroscopy. Both isostructural compounds crystallize in the monoclinic P21/c space group with a = 8.2700(6) Å, b = 9.3691(6) Å, c = 8.8896(7) Å, β = 94.196(3)°, V = 686.94(9) Å3 for Cd(BF4)(TaF6) and a = 8.3412(8) Å, b = 9.4062(8) Å, c = 8.9570(7) Å, β = 93.320(5)°, V = 701.58(11) Å3 for Cd(BF4)(BiF6). Eight fluorine atoms (4 BF4 + 4 AF6) form a surrounding around the cadmium atom in the shape of distorted square antiprism. These compounds are not isostructural with mixed-anion analogues of Ca, Sr, Ba and Pb studied earlier.  相似文献   

14.
Anodic voltammetry and electrolysis of the metallocenes ferrocene, ruthenocene, and nickelocene have been studied in dichloromethane containing two different fluorine-containing anions in the supporting electrolyte. The perfluoroalkoxyaluminate anion [Al(OC(CF3)3)4] has very low nucleophilicity, as shown by its inertness towards the strong electrophile [RuCp2]+ and by computation of its electrostatic potential in comparison to other frequently used electrolyte anions. The low ion-pairing ability of this anion was shown by the large spread in E1/2 potentials (ΔE1/2 = 769 mV) for the two one-electron oxidations of bis(fulvalene)dinickel. The hexafluoroarsenate anion [AsF6], on the other hand, reacts rapidly with the ruthenocenium ion and is much more strongly ion-pairing towards oxidized bis(fulvalene)dinickel (ΔE1/2 = 492 mV). In terms of applications of these two anions to the anodic oxidation of organometallic sandwich complexes, the behavior of [Al(OC(CF3)3)4] is similar to that of other weakly-coordinating anions such as [B(C6F5)4], whereas that of [AsF6] is similar to the more traditional electrolyte anions such as [PF6] and [BF4]. Additionally, the synthesis and crystal structure of [Cp2Fe][Al(OC(CF3)3)4] are reported.  相似文献   

15.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

16.
Tin(II) fluoride reacts with Lewis acids, AsF5 and SbF5, in a 2:1 ratio, to give salts of the [Sn2F3+] cation. Reaction of SnF·MF6 with SnF2 in liquid SO2 also produces the [Sn2F3] [MF6] salt. Tin-119 Mössbauer data are presented and compared with those for SnF2, SnF·MF6 and Sn(SbF6)2.  相似文献   

17.
This contributions shows with a series of ab initio MP2 and DFT (BP86 and B3-LYP) computations with large basis sets up to cc-pVQZ quality that the literature value of the standard enthalpy of depolymerization of Sb4F20(g) to give SbF5(g) (+18.5 kJ mol−1) [J. Fawcett, J.H. Holloway, R.D. Peacock, D.R. Russell, J. Fluorine Chem. 20 (1982) 9] is by about 50 kJ mol−1 in error and that the correct value of (Sb4F20(g)) is +68 ± 10 kJ mol−1. We assign , , and values for SbnF5n with n = 2-4 and compare the results to available experimental gas phase data. Especially the MP2/TZVPP values obtained in an indirect procedure that rely on isodesmic reactions or the highly accurate compound methods G2 and CBS-Q are in excellent agreement with the experimental data, and reproduce also the fine experimental details at temperatures of 423 and 498 K. With these data and the additional calculation of [SbnF5n+1] (n = 1-4), we then assessed the fluoride ion affinities (FIAs) of SbnF5n(g), nSbF5(g), nSbF5(l) and the standard enthalpies of formation of SbnF5n(g) and [SbnF5n+1](g): FIA(SbnF5n(g)) = 514 (n = 1), 559 (n = 2), 572 (n = 3) and 580 (n = 4) kJ mol−1; FIA(nSbF5(g)) = 667 (n = 2), 767 (n = 3) and 855 (n = 4) kJ mol−1; FIA(nSbF5(l)) = 434 (n = 1), 506 (n = 2), 528 (n = 3) and 534 (n = 4) kJ mol−1. Error bars are approximately ±10 kJ mol−1. Also the related Gibbs energies were derived. ΔfH°([SbnF5n+1](g)) = −2064 ± 18 (n = 1), −3516 ± 25 (n = 2), −4919 ± 31 (n = 3) and −6305 ± 36 (n = 4) kJ mol−1.  相似文献   

18.
Pathways for the rearrangement and decomposition of the (CH3)3M+ (M = Si, Ge, Sn) ions are traced by the detection of stationary points on the potential energy surfaces of these ions by the B3LYP/aug-cc-pVDZ method. All three systems have stationary points similar in geometry, but very different in energy, especially on going from M = Si, Ge on the one hand to M = Sn on the other. In addition to previously found isomers of (CH3)3Si+ which have their analogs in the two other systems, “side-on” complexes with ethane and propane were revealed for all cations studied. Predicted changes in transition state and dissociation energies on going from M = Si to M = Sn allowed us to rationalize the trends for the relative decomposition product yields observed in mass-spectrometry studies of these cations.  相似文献   

19.
A series of N-alkyl-N-methylpyrrolidinium (RMPyr+, where R = E: ethyl, B: butyl, and H: hexyl) and N-butylpyridinium (BPy+) salts based on the fluorocomplex anions, BF4, PF6, SbF6, NbF6, TaF6, and WF7, have been synthesized and their thermal behavior has been investigated. The melting points of the RMPyr+ salts are above room temperature with the trend; BMPyrAF6 < HMPyrAF6 < EMPyrAF6 for the hexafluorocomplex salts. Some of the salts containing BMPyr+ and HMPyr+ exhibit phase transitions in the solid states. Similar melting points of BPy+ salts of PF6, SbF6, NbF6, TaF6, and WF7 are observed at around 350 K. Ionic conductivity and viscosity for BMPyrNbF6 (3.0 mS cm−1 and 164 cP at 328 K) are similar to those for BMPyrTaF6 (3.0 mS cm−1 and 165 cP at 328 K), resulting from the similarity of the anions in size. The activation energies of ionic conductivity for the NbF6 and TaF6 salts are 18 and 20 kJ mol−1, and those for viscosity are 23 and 25 kJ mol−1, respectively calculated by Arrhenius equation in the temperature range between 328 and 348 K. Electrochemical windows of BMPyrNbF6, BMPyrTaF6, and BMPyrWF7 are about 4.0, 5.0 and 3.1 V, respectively.  相似文献   

20.
Ammonium, 1,5-diamino-4-methyl-tetrazolium and 4-amino-1-methyl-triazolium salts of 5-difluoroaminodifluoromethyl-tetrazolate (TA-CF2NF2) were prepared by metathesis reactions of silver 5-difluoroaminodifluoromethyl-tetrazolate and the corresponding iodides. All are thermally stable to ∼150 °C. The ammonium salt has a density of 1.88 g cm−3. The combination of the CBS-4 method and isodesmic bond separation reactions was found to be an economical and reliable method to estimate heats of formation for polyfluorinated molecules. The standard heats of formation () of ammonium 5-difluoroaminodifluoromethyl-tetrazolate was calculated to be −53.13 kcal mol−1 using the CBS-4 method. While its detonation pressures (P) and velocities (D) were estimated using Cheetah 4.0: P = 28.78 GPa; D = 8490 m s−1; detonation properties for 1,5-diamino-4-methyl-tetrazolium salts of 5-difluoroaminomethyltetrazolate (TA-CH2NF2), 5-difluoroaminotetrazolate (TA-NF2) and 5-difluoroaminodinitromethyl-tetrazolate (TA-C(NO2)2NF2) are also compared based on predicted densities and computed heats of formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号