首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vapour–liquid equilibrium measurements for binary and ternary systems containing carbon dioxide, 1-propanol, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquids are presented in this work. The binary CO2 + 1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide system at 313.15 K at pressure range from 2 to 14.4 MPa was examined. The obtained phase envelop shows that even at low pressure of CO2 the solubility of the gas in the ionic liquid is high. The ternary phase equilibria were studied at 313.15 K and pressures in the range from 9 to 12 MPa. The ternary phase diagrams show that higher CO2 pressure diminishes the miscibility gap.  相似文献   

2.
Isobaric (vapour + liquid) equilibrium data have been measured for the (toluene + sulfolane), (ethylbenzene + sulfolane), and (isopropylbenzene + sulfolane) binary systems with a modified Rose-Williams still at 101.33 kPa. The experimental data of binary systems were well correlated by the non-random two-liquid (NRTL) and universal quasi-chemical (UNIQUAC) activity coefficient models for the liquid phase. All the experimental results passed the thermodynamic consistency test by the Herington method. Furthermore, the model UNIFAC (Do) group contribution method was used. Sulfolane is treated as a group (TMS), the new group interaction parameters for CH2–TMS, ACH–TMS and ACCH2–TMS were regressed from the VLE data of (toluene + sulfolane) and (ethylbenzene + sulfolane) binary systems. Then these group interaction parameters were used to estimate phase equilibrium data of the (isopropylbenzene + sulfolane) binary system. The results showed that the estimated data were in good agreement with the experimental values. The maximum and average absolute deviations of the temperature were 4.50 K and 2.39 K, respectively. The maximum and average absolute deviations for the vapour phase compositions of isopropylbenzene were 0.0237 and 0.0137, respectively.  相似文献   

3.
Solid–liquid, liquid–liquid and vapour–liquid equilibrium measurements for binary and ternary systems containing building blocks of biomass origin such as propionic acid, lactic acid and alternative solvents like carbon dioxide and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid have been carried out at 313.15 K. The binary solid–liquid and liquid–liquid equilibrium measurements were performed at ambient pressure. The vapour–liquid equilibrium was studied in the range of pressure from 3.54 to 12 MPa while ternary systems were examined at 9, 10 and 12 MPa. The samples from the coexisting phases were taken and the compositions of both liquid and vapour phases were determined experimentally. The three-phase system was observed for lactic acid + ionic liquid + CO2 as well. The achieved results were correlated using the Peng–Robinson equation of state with the Mathias–Klotz–Prausnitz mixing rule. The set of interaction parameters for the employed equations of state and the mixing rule for the investigated systems were obtained.  相似文献   

4.
5.
The ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate has been tested as solvent for the separation of thiophene from aliphatic hydrocarbons. Liquid–liquid equilibrium data have been determined for ternary systems containing the ionic liquid, thiophene and C6, C7, C12 or C16 alkanes at T = 298.15 K. The performance of the ionic liquid as solvent in such systems has been evaluated. The experimental data were correlated using the NRTL and UNIQUAC equations, and the binary interaction parameters have been reported. The phase diagrams for the ternary mixtures including both the experimental and calculated tie-lines have been presented.  相似文献   

6.
Densities, refractive indices and dynamic viscosities of binary and ternary mixtures composed of isopropyl acetate, isopropanol, 1-octyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ([C8mim][NTf2]) have been determined at 298.15 K and atmospheric pressure. The excess molar volumes and dynamic viscosity changes of mixing have been calculated and correlated using the Redlich–Kister polynomial equation. Isobaric vapour–liquid equilibrium (VLE) data have been determined experimentally for these binary and ternary systems at 101.32 kPa. The equilibrium data have been adequately correlated by means of Wilson, NRTL, and UNIQUAC equations for the liquid phase activity coefficient.  相似文献   

7.
The primary objective of this study is to develop an empirical correlation model that is able to predict the solid–liquid-vapour phase equilibria (SLVE) for the ternary system of N2-Kr-Xe at pressures ranging from 1 to 45 bar and temperatures ranging from 80 to 180 K. The model was based on Peng-Robinson equation of state. To optimize the interaction parameters that are needed in the model, it was first used to correlate the experimental SLVE data found in the literature for the N2-Kr, and N2-Xe and Kr-Xe binary systems. When the corresponding interaction parameters were optimized, the model was then expanded to predict the SLVE and construct the phase envelope of the ternary system of N2 -Kr-Xe.  相似文献   

8.
A solid-liquid equilibrium (SLE) thermodynamic model based on the SAFT-VR equation of state (EOS) is presented. The model allows for the calculation of solid-liquid phase equilibria in binary mixtures at atmospheric pressure. The fluid (liquid) phase is treated with the SAFT-VR approach, where molecules are modelled as associating chains of tangentially bonded spherical segments interacting via square-well potentials of variable range. The equilibrium between the liquid and solid phase is treated following a standard thermodynamic method that requires the experimental temperature and enthalpy of fusion of the solute. The model is used to calculate the solubilities of naphthalene and acetic acid in common associating and non-associating organic solvents and to determine the solid-liquid phase behaviour of binary mixtures with simple eutectics. The SAFT-VR pure component model parameters are determined by comparison to experimental vapour pressure and saturated liquid density data with the choice of association models according to the nature of the molecule; in addition, an unlike adjustable parameter (kij) is used to model the solutions. The solubility data of naphthalene and acetic acid in both associating and non-associating solvents are reproduced essentially within the accuracy of the experimental measurements. The phase boundaries and the position of the eutectic points in the binary mixtures considered are, in most cases, reproduced with the accuracy commensurate with the industrial applications. Overall, the results presented show that the SAFT-VR EOS can be used with confidence for the prediction of the SLE of binary systems at atmospheric pressure.  相似文献   

9.
Molecular iodine is oxidised by phosphorus pentafluoride in iodine pentafluoride at room temperature giving I2+, PF6?, and PF3. I2+ is formed from uranium hexafluoride under similar conditions, but further oxidation occurs depending on the reaction stoicheiometry used. In all cases uranium pentafluoride is formed. Copper(II) fluoride reacts with UF5 in acetonitrile at room temperature to give copper(II) hexafluorouranate(V), which is reduced by copper metal to give the copper(I) salt. The latter compound is formed from UF6 and Cu metal, via the CuII salt, only if a fresh Cu surface is used for the reduction step.  相似文献   

10.
《Fluid Phase Equilibria》1999,161(1):21-32
Modification of the hard sphere expansion conformal solution theory is presented concerning polarity of molecules, the Lennard–Jones (12-6) parameters, and mixing rules for unlike parameters. The theory was used for prediction of vapour–liquid equilibrium at constant temperature in binary, ternary and quaternary mixtures consisting of chlorobutanes and C7 hydrocarbons. Excess molar volumes for binary systems are calculated, too.  相似文献   

11.
Experimental and theoretical studies on thermodynamic properties of quinolinium-based ionic liquids (ILs) based on bis(trifluoromethylsulfonyl)imide anion (namely N-butyl-quinoloinium bis(trifluoromethylsulfonyl)imide, [BQuin][NTf2], N-hexylquinoloinium bis(trifluoromethyl-sulfonyl)imide, [HQuin][NTf2], and N-octylquinoloinium bis(trifluoromethyl-sulfonyl)imide, [OQuin][NTf2]) with aromatic sulfur compounds and heptane, as a model compound of fuel were examined in order to assess the applicability of the studied ionic liquids for desulfurization of fuels. With this aim, the temperature-composition phase diagrams of 13 binary mixtures composed of organic sulfur compounds (thiophene, benzothiophene, or 2-methylthiophene) or heptane and ionic liquid (IL) were investigated at ambient pressure. A dynamic method was used to determine the (solid–liquid) equilibrium phase diagrams in binary systems over a wide composition range and temperature range from T = 255.15 to 365.15 K up to the fusion temperature of ILs. The immiscibility gap with an upper critical solution temperature (UCST) was observed for each binary system under study. The influence of the alkane chain length of the substituent on the IL cation and of the sulfur compounds (the aromaticity of the solvent) was described. The experimental (solid + liquid) phase equilibrium dataset were successfully correlated using the well-known NRTL equation.  相似文献   

12.
The UNIFAC model is extended to mixtures of ionic liquids consisting of the imidazolium cation and the hexafluorophosphate anion with alkanes, cycloalkanes, alcohols and water. Two new main groups, the imidazolium and the hexafluorophosphate groups, are introduced in UNIFAC. The required group interaction parameters between these groups and the existing UNIFAC main groups, CH2, OH and H2O, are determined by fitting binary liquid–liquid equilibrium and infinite dilution activity coefficient experimental data. The predictive capability of the extended UNIFAC model is examined against experimental data for vapour–liquid equilibrium, liquid–liquid equilibrium and activity coefficients at infinite dilution of binary and ternary systems containing 1-alkyl-3-alkyl′-imidazolium hexafluorophosphate ionic liquids, alkanes, cycloalkanes, alcohols and water. The results indicate that UNIFAC is a reliable model for phase equilibrium predictions in mixtures containing this type of ionic liquids.  相似文献   

13.
本文研究了25℃时,K+,Rb+,//Cl-1/2C3H7OH,H2O两个四元体系的相平衡。测定了KCl+RbCl+H2O三元体系液-固相间的关系和KCl/RbCl不同质量比(1/0、0.75/0.25、0.5/0.5、0.25/0.75和0/1)在1/2-C3H7OH-H2O两种溶剂存在时的5组四元体系的液-液-固相关系。绘制出全相图。探讨了盐析效应,并采用一个五元参数方程对双液线数据进行了关联,此外采用一个经过修改Eisen-Joffe方程对结线数据和饱和平衡数据进行拟合,得到的结果令人满意。  相似文献   

14.
The Cu-B-Se (B = In, As, Sb, Bi) systems are studied by measurement of EMF for concentration circuits vs. a copper electrode in the temperature range of 300–430 K. A solid superionic Cu4RbCl3I2 conductor is used as an electrolyte. Diagrams of solid-phase equilibriums in the studied systems are constructed. Partial molar functions of alloyed copper are calculated on the basis of the equations of the temperature dependences of EMF. Potential-forming reactions corresponding to the measured EMF values are determined on the basis of the phase diagrams and standard thermodynamic formation functions and standard entropies of ternary compounds are calculated.  相似文献   

15.
The solubility diagrams in ternary MBr2-NR4Br-H2O systems (M = Cd, Co; R = Me, Et, Bu) at 25°C were determined by isothermal saturation. The composition and crystallization range of solid compounds occurring in equilibrium with the liquid phase were found. The effects of ion hydration, association of tetraalkylammonium salts, and complex formation with d-elements on the solution-solid phase equilibrium were estimated.  相似文献   

16.
In the ternary system cesium nitrate-water-acetonitrile, in which liquid-liquid phase separation with an upper critical solution point (UCSP) exists in the liquid binary subsystem, was studied in the range from ?5 to 120°C using visual polythermal analysis. Liquid-liquid phase separation in the ternary system is observed above 96.0°C and below 2.8°C. Acetonitrile distribution coefficients between the aqueous and organic phases of monotectic equilibrium were calculated for various temperatures. Phase isotherms of the system confirm the general scheme of the topological transformation of phase diagrams in salt-binary solvent ternary systems with salting out.  相似文献   

17.
Phase diagrams of liquid binary systems RED-1 diluent-tri-n-butyl phosphate solvates of rare-earth element(III) (neodymium, gadolinium, yttrium, ytterbium, lutetium) nitrates were studied, and the binodal curves in the ternary systems [Ln(NO3)3(TBP)3] (Ln = Nd and Yb)-RED-1-Escaid 100 were determined at various temperatures.  相似文献   

18.
Zeck, S. and Knapp, H., 1986. Vapor—liquid and vapor—liquid—liquid phase equilibria of binary and ternary systems of nitrogen, ethene and methanol: experiment and data evaluation. Fluid Phase Equilibria, 26: 37–58.VLE and VLLE of three binary and one ternary system containing the components N2, C2H4 and CH3OH are investigated in a high-pressure phase equilibrium apparatus with vapor recirculation at temperatures 240 < T < 298 K and pressures 4 < p < 100 bar. Immiscibilities in the liquid phase are observed in the binary system C2H4CH3OH with a lower critical end point and in the ternary system N2C2H4CH3OH.The experimental results are reported and compared with the results of other investigators and of available correlations.  相似文献   

19.
The perturbed-chain polar statistical associating fluid theory (PCP-SAFT) equation of state is applied to correlate phase equilibria for mixtures of hydrogen sulfide (H2S) and carbon dioxide (CO2) with alkanes, with aromatics, and with water over wide temperature and pressure ranges. The binary mixtures of H2S–methane and CO2–methane are studied in detail including vapor–liquid, liquid–liquid and fluid–solid phase equilibria. Very satisfying results were obtained for the binary mixtures as well as for the ternary mixture of H2S–CO2–methane using the (constant) interaction parameters of the binary pairs.  相似文献   

20.
Tie-line data for ternary systems of (ethylene glycol + toluene + n-octane) at three temperatures (295.15, 301.15, and 307.15) K are reported. The compositions of liquid phases at equilibrium were determined and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The partition coefficients and the selectivity factor of ethylene glycol are calculated and compared to suggest which ethylene glycol is more suitable for extracting of toluene from n-octane. The phase diagrams for the studied ternary mixtures including both the experimental and correlated tie lines are presented. From the phase diagrams and the selectivity factors, it is concluded that ethylene glycol may be used as a suitable solvent in extraction of toluene from n-octane mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号