首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have conducted experimental and numerical studies on flame synthesis of carbon nanotubes (CNTs) to investigate the effects of three key parameters – selective catalyst, temperature and available carbon sources – on CNT growth. Two different substrates were used to synthesize CNTs: Ni-alloy wire substrates to obtain curved and entangled CNTs and Si-substrates with porous anodic aluminum oxide (AAO) nanotemplates to grow well-aligned, self-assembled and size-controllable CNTs, each using two different types of laminar flames, co-flow and counter-flow methane–air diffusion flames. An appropriate temperature range in the synthesis region is essential for CNTs to grow on the substrates. Possible carbon sources for CNT growth were found to be the major species CO and those intermediate species C2H2, C2H4, C2H6, and methyl radical CH3. The major species H2, CO2 and H2O in the synthesis region are expected to activate the catalyst and help to promote catalyst reaction.  相似文献   

2.
It has been recently demonstrated that carbon nanotubes (CNTs) represent a new type of chemical sensor capable of detecting a small concentration of molecules such as CO, NO2, NH3.In this work, CNTs were synthesized by chemical vapor deposition (CVD) on the SiO2/Si substrate by decomposition of acetylene (C2H2) on sputtered Ni catalyst nanoparticles. Their structural properties are studied by atomic force microscopy, high-resolution scanning electron microscopy (HRSEM) and Raman spectroscopy. The CNTs grown at 700 °C exhibit a low dispersion in size, are about 1 μm long and their average diameter varies in the range 25–60 nm as a function of the deposition time. We have shown that their diameter can be reduced either by annealing in oxygen environment or by growing at lower temperature (less than 600 °C).We developed a test device with interdigital Pt electrodes on an Al2O3 substrate in order to evaluate the CNTs-based gas sensor capabilities. We performed room temperature current–voltage measurements for various gas concentrations. The CNT films are found to exhibit a fast response and a high sensitivity to NH3 gas.  相似文献   

3.
Here, we demonstrate the low-temperature (480–612 °C) synthesis of carbon nanotubes (CNTs) on different metallic underlayers (i.e., NiV, Ir, Ag, Pt, W, and Ta) using diffusion (dc) plasma-enhanced (~20 W, −600 V) chemical vapour deposition (DPECVD). The catalyst used is bi-layered Fe/Al and the feedstock used is a mixture of C2H2 and NH3 (1:4). The crucial component is the diffusion of radical ions and hydrogen generated such as H2/H+/H2+/NH3+/CH2+/C2H2+ (which are confirmed by in-situ mass spectroscopy) from the nozzle, where it is inserted for most effective plasma diffusion between a substrate and a gas distributor.  相似文献   

4.
燃烧法合成碳纳米管的实验方案设计   总被引:2,自引:0,他引:2  
碳纳米管是一种新型的碳材料,其合成方法多种多样。燃烧法是一种新兴的合成方法,燃烧过程提供用于碳纳米管生长的高温环境,同时也提供足够的烃原料。目前,用于合成碳纳米管的原料包括气体燃料和液体燃料,火焰类型主要有层流扩散火焰、逆流扩散火焰和预混火焰等。影响炭纳米管火焰合成的因素主要有气体成分,温度,催化剂,燃氧比和采样条件。我们采用甲烷扩散火焰用于实验研究炭纳米管的合成条件。实验系统包括扩散火焰喷嘴,混和段,质量流量计,取样探针和基板,气源。内径5 mm的喷嘴与内径100 mm的钢筒同轴。实验测得在气量为0.20 SLM时火焰高度为 3.5 cm。涂覆有催化剂的基板水平朝下置于火焰中采样,并将采集的样品进行电镜分析。本文还对燃烧法合成碳纳米管的机理进行了分析。  相似文献   

5.
6.
We present experimental results from turbulent low-swirl lean H2/CH4 flames impinging on an inclined, cooled iso-thermal wall, based on simultaneous stereo-PIV and OH×CH2O PLIF measurements. By increasing the H2 fraction in the fuel while keeping Karlovitz number (Ka) fixed in a first series of flames, a fuel dependent near-wall flame structure is identified. Although Ka is constant, flames with high H2 fraction exhibit significantly more broken reaction zones. In addition, these high H2 fraction flames interact significantly more with the wall, stabilizing through the inner shear layer and well inside the near-wall swirling flow due to a higher resistance to mean strain rate. This flame-wall interaction is argued to increase the effective local Ka due to heat loss to the wall, as similar flames with a (near adiabatic) ceramic wall instead of a cooled wall exhibit significantly less flame brokenness. A second series of leaner flames were investigated near blow-off limit and showed complete quenching in the inner shear layer, where the mean strain rate matches the extinction strain rate extracted from 1D flames. For pure CH4 flames (Ka ≈ 30), the reaction zone remains thin up to the quenching point, while conversely for the 70% H2 flames (Ka ≈ 1100), the reaction zone is highly fragmented. Remarkably, in all near blow-off cases with CH4 in the fuel, a large cloud of CH2O persists downstream the quenching point, suggesting incomplete combustion. Finally, ultra lean pure hydrogen flames were also studied for equivalence ratios as low as 0.22, and through OH imaging, exhibit a clear transition from a cellular flame structure to a highly fragmented flame structure near blow-off.  相似文献   

7.
8.
To investigate (fuel-)lean/rich limits and essential stoichiometries, i.e., the borders of lean/rich combustion, one-dimensional steady computations with detailed chemistry for flame balls, counterflow flames, and stretch-free planar flames were conducted using a CH4/O2/Xe mixture that has been used in microgravity experiments. As continuous converged solutions were obtained under lean/rich conditions, it was suggested that the existence of flame ball not only under lean but also under rich condition. Flame radii and temperatures of flame balls decreased and increased toward the lean/rich limits from their maximum and minimum values, respectively. The lean limits were wider in the order of the flame ball, counterflow flame, and stretch-free planar flame. Therefore, the lean flammability limit corresponded to the lean limit of the flame ball in the mixture. Conversely, the rich limits were wider in the order of the counterflow flame, stretch-free planar flame, and flame ball. Thus, the rich flammability limit corresponded to the rich limit of the counterflow flame in the mixture. Essential stoichiometry, which represents the actual stoichiometry depending on the dominant transport in near-flame front, was not uniquely determined as conventional stoichiometry (ϕ = 1); it was located between the equivalence ratio of ϕ = 1 and ϕc, where ϕ c denotes the critical equivalence ratio is evaluated using the fuel and oxidizer Lewis number of a target mixture. The results indicated that the essential stoichiometry of the stretch-free planar flame corresponded to ϕ = 1, that of the flame ball corresponded to ϕ = ϕ c, and that of the stretched flame was located between ϕ = 1 and ϕ c depending on the stretch rate.  相似文献   

9.
The inhibition/extinction of various flames—premixed stoichiometric C3H8/air, nonpremixed counterflow CH4/O2/N2, and nonpremixed coflow n-heptane/air cup-burner flames doped with a number of phosphorus-containing compounds (PCCs)—has been investigated experimentally. More than 20 PCCs (organic phosphates, phosphonates, phosphates) and their fluorinated derivatives were studied. All PCCs exhibited similar dependencies in burning velocities, extinction strain rates, and extinction volume fractions of CO2 upon PCC loading in the range of mole fractions of 0–7000 ppm within an experimental deviation of ± 5%. This confirms that the inhibition effectiveness of the PCCs is influenced by the phosphorus content in the PCC molecule rather than by the structure of the molecule. The burning velocity of a stoichiometric C3H8/air mixture and the extinction strain rate of a nonpremixed counterflow CH4/O2/N2 flame doped with trimethylphosphate were calculated. Satisfactory agreement between experimental and modeling results confirms the conclusion that the reactions of phosphorus oxyacids with radicals are responsible for flame inhibition.  相似文献   

10.
This work reports an experimental and kinetic modeling investigation on the laminar flame propagation of acetone and 2-butanone at normal to high pressures. The experiments were performed in a high-pressure constant-volume cylindrical combustion vessel at 1–10 atm, 423 K and equivalence ratios of 0.7–1.5. A kinetic model of acetone and 2-butanone combustion was developed from our recent pentanone model [Li et al., Proc. Combust. Inst. 38 (2021) 2135–2142] and validated against experimental data in this work and in literature. Together with our recently reported data of 3-pentanone, remarkable fuel molecular structure effects were observed in the laminar flame propagation of the three C3C5 ketones. The laminar burning velocity increases in the order of acetone, 2-butanone and 3-pentanone, while the pressure effects in laminar burning velocity reduces in the same order. Modeling analysis was performed to provide insight into the key pathways in flames of acetone and 2-butanone. The differences in radical pools are concluded to be responsible for the observed fuel molecular structure effects on laminar burning velocity. The favored formation of methyl in acetone flames inhibits its reactivity and leads to the slowest laminar flame propagation, while the easiest formation of ethyl in 3-pentanone flames results in the highest reactivity and fastest laminar flame propagation. Furthermore, the LBVs of acetone and 3-pentanone exhibit the strongest and weakest pressure effects respectively, which can be attributed to the influence of fuel molecular structures through two crucial pressure-dependent reactions CH3 + H (+M) = CH4 (+M) and C2H4 + H (+M) = C2H5 (+M).  相似文献   

11.
Since prepared substrates offer an appropriate method for the selective production of uniform arrays of aligned CNTs and CNFs, it is important to illustrate the influence of different catalysts on the resulting nanostructures. This investigation characterizes the activity of three catalysts—iron in alloyed form as stainless steel, nickel, and platinum—on carbon nanostructure formation under identical conditions in an ethylene/air nonpremixed flame. We have synthesized well-aligned multi-walled CNTs (on Ni) and CNFs (on stainless steel). The third transition metal Pt produces CNF structures of a different kind, and its activity has not been previously characterized in flames. The catalyst and gas-phase conditions leading to the formation of these different structures are discussed.  相似文献   

12.
Here, we demonstrate the low-temperature (480–612 °C) synthesis of carbon nanotubes (CNTs) on different metallic underlayers (i.e., NiV, Ir, Ag, Pt, W, and Ta) using diffusion (dc) plasma-enhanced (~20 W, −600 V) chemical vapour deposition (DPECVD). The catalyst used is bi-layered Fe/Al and the feedstock used is a mixture of C2H2 and NH3 (1:4). The crucial component is the diffusion of radical ions and hydrogen generated such as H2/H+/H2+/NH3+/CH2+/C2H2+ (which are confirmed by in-situ mass spectroscopy) from the nozzle, where it is inserted for most effective plasma diffusion between a substrate and a gas distributor.  相似文献   

13.
Ignition temperatures of non-premixed cyclohexane, methylcyclohexane, ethylcyclohexane, n-propylcyclohexane, and n-butylcyclohexane flames were measured in the counterflow configuration at atmospheric pressure, a free-stream fuel/N2 mixture temperature of 373 K, a local strain rate of 120 s?1, and fuel mole fractions ranging from 1% to 10%. Using the recently developed JetSurf 2.0 kinetic model, satisfactory predictions were found for cyclohexane, methyl-, ethyl-, and n-propyl-cyclohexane flames, but the n-butylcyclohexane data were overpredicted by 20 K. The results showed that cyclohexane flames exhibit the highest ignition propensity among all mono-alkylated cyclohexanes and n-hexane due to its higher reactivity and larger diffusivity. The size of mono-alkyl group chain was determined to have no measurable effect on ignition, which is a result of competition between fuel reactivity and diffusivity. Detailed sensitivity analyses showed that flame ignition is sensitive primarily to fuel diffusion and also to H2/CO and C1–C3 hydrocarbon kinetics.  相似文献   

14.
A 1.5 m long turbulent-wake combustion vessel with a 0.15 m × 0.15 m cross-sectional area is proposed for spatiotemporal measurements of curvature, strain, dilatation and burning rates along a freely downward-propagating premixed flame interacting with a parallel row of staggered vortex pairs having both compression (negative) and extension (positive) strains simultaneously. The wanted wake is generated by rapidly withdrawing an electrically-controlled, horizontally-oriented sliding plate of 5 mm thickness for flame–wake interactions. Both rich and lean CH4/air flames at the equivalence ratios  = 1.4 and  = 0.7 with nearly the same laminar burning velocity are studied, where flame–wake interactions and their time-dependent velocity fields are obtained by high-speed, high-resolution DPIV and laser-tomography. Correlations among curvature, strain, stretch, and dilatation rates along wrinkled flame fronts at different times are measured and thus their influences on front propagation rates can be analyzed. It is found that strain-related effects have significant influence on front propagation rates of rich CH4/air (diffusionally stable) flames even when the curvature weights more in the total stretch than the strain rate does. The local propagation rates along the wrinkled flame front are more intense at negative strain rates corresponding to positive peak dilatation rates but the global propagation rate averaged along the rich flame front remains constant during all period of flame–wake interaction. For lean CH4/air (diffusionally unstable) flames, the curvature becomes a dominant parameter influencing the structure and propagation of the wrinkled flame front, where both local and global propagation rates increase significantly with time, showing unsteady flame propagation. These experimental results suggest that the theory of laminar flame stretch can be applicable to a more complex flame–wake interaction involving unsteadiness and multitudinous interactions between vortices.  相似文献   

15.
Lean premixed combustion has potential advantages of reducing pollutants and improving fuel economy. In some lean engine concepts, the fuel is directly injected into the combustion chamber resulting in a distribution of lean fuel/air mixtures. In this case, very lean mixtures can burn when supported by hot products from more strongly burning flames. This study examines the downstream interaction of opposed jets of a lean-limit CH4/air mixture vs. a lean H2/air flame. The CH4 mixtures are near or below the lean flammability limit. The flame composition is measured by laser-induced Raman scattering and is compared to numerical simulations with detailed chemistry and molecular transport including the Soret effect. Several sub-limit lean CH4/air flames supported by the products from the lean H2/air flame are studied, and a small amount of CO2 product (around 1% mole fraction) is formed in a “negative flame speed” flame where the weak CH4/air mixture diffuses across the stagnation plane into the hot products from the H2/air flame. Raman scattering measurements of temperature and species concentration are compared to detailed simulations using GRI-3.0, C1, and C2 chemical kinetic mechanisms, with good agreement obtained in the lean-limit or sub-limit flames. Stronger self-propagating CH4/air mixtures result in a much higher concentration of product (around 6% CO2 mole fraction), and the simulation results are sensitive to the specific chemical mechanism. These model-data comparisons for stronger CH4/air flames improve when using either the C2 or the Williams mechanisms.  相似文献   

16.
Zn1−xMnxFe2O4 (x = 0, 0.2 and 0.4) nanomaterials were synthesized by sol–gel citrate method and studied structural and gas sensing properties. The structural characteristics of synthesized nanomaterials were studied by X-ray diffraction measurement (XRD) and transmission electron microscope (TEM). The results revealed that the particle size is in the range of 30–35 nm for Mn–Zn ferrite with good crystallinity. The gas sensing properties were studied towards reducing gases like LPG, CH4, CO and ethanol and it is observed that Mn–Zn ferrite shows high response to ethanol at relatively lower operating temperature. The Zn0.6Mn0.4Fe2O4 nanomaterial shows better sensitivity towards ethanol at an operating temperature 300 °C. Incorporation of 1.5 wt.% Pd improved the sensitivity, selectivity, response time and reduced the operating temperature from 300 °C to 230 °C for ethanol sensor. The response time of 200 ppm ethanol in air is about 10s.  相似文献   

17.
A detailed comparison has been conducted between chemiluminescence (CL) species profiles of OH?, CH?, and C2 ?, obtained experimentally and from detailed flame kinetics modeling, respectively, of atmospheric pressure non-premixed flames formed in the forward stagnation region of a fuel flow ejected from a porous cylinder and an air counterflow. Both pure methane and mixtures of methane with hydrogen (between 10 and 30 % by volume) were used as fuels. By varying the air-flow velocities methane flames were operated at strain rates between 100 and 350 s?1, while for methane/hydrogen flames the strain rate was fixed at 200 s?1. Spatial profiles perpendicular to the flame front were extracted from spectrograms recorded with a spectrometer/CCD camera system and evaluating each spectral band individually. Flame kinetics modeling was accomplished with an in-house chemical mechanism including C1–C4 chemistry, as well as elementary steps for the formation, removal, and electronic quenching of all measured active species. In the CH4/air flames, experiments and model results agree with respect to trends in profile peak intensity and position. For the CH4/H2/air flames, with increasing H2 content in the fuel the experimental CL peak intensities decrease slightly and their peak positions shift towards the fuel side, while for the model the drop in mole fraction is much stronger and the peak positions move closer to the fuel side. For both fuel compositions the modeled profiles peak closer to the fuel side than in the experiments. The discrepancies can only partly be attributed to the limited attainable spatial resolution but may also necessitate revised reaction mechanisms for predicting CL species in this type of flame.  相似文献   

18.
Three novel diphosphine-Pt-disulfide complexes were synthesized and characterized by 1H NMR, mass spectrometry and elemental analysis. As a diphosphine, 1,8-bis(diphenylphosphino)naphthalene (dppn), rac-2,2-bis(diphenylphosphino)-1,1-binaphthyl (dppbn), or 1,1-bis(diphenylphosphino)ferrocene (dppf) was employed and chelated to the Pt(II) center. As an anion, p-tolylsulfide (4-SC6H4CH3) was incorporated to Pt(II) center subsequently, yielding (dppn)Pt(4-SC6H4CH3)2 (1), (dppbn)Pt(4-SC6H4CH3)2 (2), or (dppf)Pt(4-SC6H4CH3)2 (3). The photophysical properties of the resulting Pt complexes were investigated with UV–VIS spectroscopy, photoluminescence (PL) spectroscopy and transient PL. Charge Transfer absorptions between the metal and the ligand of 2 and 3 were observed at 320–350 nm in the UV–VIS spectra whereas such noticeable absorption was not observed in 1. The solid films of 1 and 3 showed luminescence at 600 and 580 nm, respectively, while that of 2 did not show emission at the room temperature. The complex 3 exhibited two excited state lifetimes, 23 and 125 ns, at room temperature, and the weighting factor for 125 ns state is only 10% of that for 23 ns one. It means that the prominent luminescence was fluorescence and the intersystem crossing through LS coupling is relatively weak.  相似文献   

19.
微量水对碳纳米管形貌的影响及其机理研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用介质阻挡放电等离子体化学气相沉积技术,在蒸镀有25nm Ni催化剂层的Si基片上,以CH4和H2作为反应气体,在973K下制备了碳纳米管,并研究了微量水的引入对碳纳米管形貌的影响.场发射扫描电子显微镜结果表明,不加水时,制备出的碳纳米管直径不均匀,分布在40—90nm之间,呈链节状的结构;加入少量水时,制备出的碳纳米管直径比较均匀,集中在70nm左右,表面为瘤状结构;当水的流量进一步增加时,得到的碳纳米管表面光滑,出现了枝状结构.原位测量了加水前后等离子体区的发射光谱,分析了微量水的引入对于碳纳米管形貌变化的影响机理. 关键词: 碳纳米管 介质阻挡放电 水 发射光谱  相似文献   

20.
Ignition temperatures of non-premixed flames of octane and decane isomers were determined in the counterflow configuration at atmospheric pressure, a free-stream fuel/N2 mixture temperature of 401 K, a local strain rate of 130 s?1, and fuel mole fractions ranging from 1% to 6%. The experiments were modeled using detailed chemical kinetic mechanisms for all isomers that were combined with established H2, CO, and n-alkane models, and close agreements were found for all flames considered. The results confirmed that increasing the degree of branching lowers the ignition propensity. On the other hand, increasing the straight chain length by two carbons was found to have no measurable effect on flame ignition for symmetric branched fuel structures. Detailed sensitivity analyses showed that flame ignition is sensitive primarily to the H2/CO and C1–C3 hydrocarbon kinetics for low degrees of branching, and to fuel-related reactions for the more branched molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号