首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
We reported some dynamic and viscometric data on an Australia strong flour-water dough. In oscillatory shear flow experiments, we found the linear viscoelastic strain limit is extremely low, of O(10–3), consistent with other published data on doughs. The relaxation spectrum derived from the dynamic data is broad, indicating the blend nature of dough. In the start-up of a simple shear flow, we found the shear stress increases nonlinearly with time to a peak value and then decreases rapidly, with no steady-state response. The concept of steady-state viscosity is not very meaningful here, unless the strain at which the measurements are taken is also specified. The stress peaks are strain-rate dependent; but they occur at a strain of O(10), for the strong flour/water dough used, over four decades of strain rates. The experimental data were used to construct a phenomenological model for dough, consisting of an hyperelastic term (representing the elastic gluten network of permanent cross-linked long chain polymers), and a viscoelastic contribution (representing the suspension of starch globules and other long-chain components in dough that are not parts of the permanent cross-linked gluten network). The model predictions compared favourably with experimental data in oscillatory and shear flows.  相似文献   

2.
 A selection of four commercial flours has been subjected to extensive rheological measurements as part of a comprehensive program of wheat improvement. The results have been used to determine which of the many types of rheological measurements provide significant discrimination between various types of modern baker's flours (including biscuit flours) and to procure data suitable for use in mathematical models describing the dough rheology. The rheological measurements undertaken include oscillatory shear at low amplitude, steady shear at a low shear rate, stress relaxation and extensional viscosity testing. Although oscillatory shear data show minor differences between these flours, the other tests show significant variations and these provide very good discrimination between the different flour types in comparison with conventional dough testing (e.g. by the extensograph). The current dough rheological measurements provide further insight into molecular structure. In the future, mathematical (constitutive) models are expected to provide a means of predicting processing and baking behaviour of bread dough. Received: 27 June 2001 Accepted: 28 August 2001  相似文献   

3.
Rheological behavior of concentrated suspensions of chemical vapor deposition carbon nanotubes in uniaxial elongation and simple shear is studied experimentally and theoretically. Nanotubes are suspended in viscous host liquids—castor oil or its blends with n-decane. The elongational measurements are performed by analyzing self-thinning (due to surface tension effect) liquid threads of nanotube suspensions. A quasi-one-dimensional model is used to describe the self-thinning process, whereas corrections accounting for thread nonuniformity and necking are introduced a posteriori. The effects of nanotube concentration and aspect ratio, viscosity of the suspending liquid, and initial diameter of the self-thinning thread in uniaxial elongation are elucidated. The results for uniaxial elongation are compared with those for simple shear. The correspondence in the results of the shear and elongational measurements is addressed and interpreted. The results conform to the Herschel–Bulkley rheological constitutive equation (i.e., power law fluids with yield stress). However, the yield stress in elongation is about 40% higher than in simple shear flow, which suggests that the original Herschel–Bulkley model need modification with the yield stress being a function of the second invariant of the deviatoric stress tensor. The present effort is the first to study capillary self-thinning of Herschel–Bulkley liquids, which are exemplified here by suspensions of carbon nanotubes.  相似文献   

4.
Aspects of dense lignite–water slurries (LWS) rheology were investigated using controlled stress and controlled strain rheometers with parallel disks and Couette geometries. During the preparation of the slurries, the achieved solids volume fractions were up to 0.425 and the particle size distributions were polydispersed with sizes up to 300 μm. In the ascending parts of consecutive flow loops, a slope transition of the flow curve was observed and studied in relation to the solids volume fraction. The obtained results with the different geometries and rheometers were qualitatively the same. By following the model proposed by Cheng (Rheol Acta 42:372–382, 2003) for thixotropic fluids, and taking into account the yield stress appearance, a suitable correlation for LWS is proposed, which is consistent with the experimental flow curves.  相似文献   

5.
This paper gives details of new data on neutralized Carbopol 940 dispersions. Appropriate techniques have been used to characterize the physical properties of the bulk gel and inter-phase slip at the wall. Previously published data are analysed and used wherever possible. Terminology and measurement difficulties are also addressed.  相似文献   

6.
Dimensionless groups of parameters characterizing an ecosystem are valuable indicators for the a priori assessment of the effect of rainfall data resolution on predictions of soil moisture and transpiration. Knowledge of these dimensionless groups enables identification of appropriate levels of rainfall data resolution, when using historical rainfall directly or when using it to derive rainfall model parameters for use in models of soil–plant–climate systems. Detailed simulation studies of the soil, plant, and climate systems in Colorado and Texas, highly resolved in time and vertical space, show that historical rainfall data resolved at the daily level allow accurate prediction of soil-moisture and transpiration dynamics for smaller time resolutions. These results support inferences based on the dimensionless groups. Furthermore, no significant improvement in the prediction of soil-moisture and transpiration dynamics is attained, when representing rainfall through a more complex Neyman–Scott model rather than the simple rectangular pulses Poisson model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号