首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We have synthesized the near-infrared water-soluble conjugated polymer poly[2,5-di(propyloxysulfonate)-1,4-phenylene-ethynylene-9,10-anthrylene (referred to as PPEASO3). Its fluorescence (at wavelengths between 650 and 800?nm following photoexcitation at 550?nm) is efficiently quenched by Cu(II) ions, while other physiologically relevant metal ions do not cause significant quenching at the same concentrations. Under optimum conditions, fluorescence intensity is inversely proportional to the concentration of Cu (II). The calibration curve displays two linear regions over the range of 0–3.2?×?10?7 mol L?1 and 3.2?×?10?7 mol L?1 to 1.0?×?10?4 mol L?1 of Cu(II), respectively. The long-wavelength excitation and emission can substantially reduce interferences by the autofluorescence and light scattering of biological matter under UV excitation. The method was successfully applied to the determination of Cu(II) in synthetic and tea samples.
Figure
Highly sensitive fluorescent sensor with low background interference was successfully applied to the determination of Cu (II) in synthetic and real samples, based on amplified fluorescence quenching of a water-soluble NIR emitting conjugated polymer.  相似文献   

2.
Lin Chang  Ting Wu  Fang Chen 《Mikrochimica acta》2012,177(3-4):295-300
We report on a simple and sensitive method for the determination of L-cysteine (Cys). It is based on a redox reaction between the non-fluorescent Cu(II)-calcein complex and Cys which results in fluorescence recovery of calcein. When Cys is added to a solution of the Cu(II)-calcein complex, Cu(II) is reduced to Cu(I), and calcein is released to form a strongly fluorescent complex with Zn(II). The effect was used to develop a fluorescence enhancement method for the determination of Cys. Under the optimum conditions, the increase in signal intensity is linear in the range from 3.0?×?10?7 to 1.2?×?10?5?mol?L?1, with a correlation coefficient (R) of 0.9978. The limit of detection (3σ) is 4.0?×?10?8?mol?L?1. The relative standard deviation (RSD) in the determination of 11 samples containing 5.0?×?10?6?mol?L?1 of Cys was 3.5%. There is little interference by common ions and other amino acids. The method, which is simple, rapid, and sensitive, was successfully applied to the determination of Cys in human serum samples.
Figure
Calcein is strongly fluorescent in water solution. It could form a non-fluorescent complex with Cu2+. When Cys is added to a solution of the Cu(II)-calcein complex, Cu(II) is reduced to Cu(I), and calcein is released to form a strongly fluorescent complex with Zn(II).  相似文献   

3.
We have developed a resonance light scattering (RLS) quenching assay for the highly sensitive determination of doxorubicin (DOX) and daunorubicin (DAU). It is based on the reduction of the intensity of the shoulder of the RLS spectra at 443?nm. The intensity of the RLS of the ethidium-DNA system decrease linearly on addition of trace quantities of DOX or DAU within the concentration range of 0.008 to 12.0???g?mL?1 for DOX, and of 0.010 to 21.0???g?mL?1 for DAU. The detection limits are 3.0 and 5.0?ng?mL?1, respectively. The assay was successfully applied to the determination of DAU in synthetic and serum samples. Compared to the reported methods for anthracyclines, this assay displays higher sensitivity, lower detection limits, and a wider linear range.
Graphical abstract
The addition of trace amount of drugs into the EB-DNA system can induce the decreased RLS intensity of EB-DNA system at the shoulder peak in BR buffer solution (pH 2.0). Besides, the decrement of RLS intensities was proportional to the concentration of drugs. Based on this phenomenon, a new RLS assay for the detection of anthracycline antibiotics was developed.  相似文献   

4.
A glassy carbon electrode modified with organic?Cinorganic pillared montmorillonite was used for voltammetric detection of mercury(II) in water. High sensitivity is obtained due to the use of the montmorillonites which displays outstanding capability in terms of adsorbing mercury ion due to its high specific surface and the presence of multiple binding sites. The experimental parameters and the effect of a chelating agent were optimized to further enhance sensitivity and selectivity. Linear calibration curves were obtained over the Hg(II) concentration range from 10 to 800???g?L?1 for 5?min accumulation, with a detection limit of 1???g?L?1. Simultaneous determination of Hg(II) and Cu(II) was also studied, and no interference was observed.
Figure
Scheme for the Organic-inorganic pillared clay adsorbing mercury.  相似文献   

5.
We describe a method for ionic liquid based dispersive liquid-liquid microextraction of Co(II), Cu(II), Mn(II), Ni(II) and Zn(II), followed by their determination via flow injection inductively coupled plasma optical emission spectrometry. The method is making use of the complexing agent 1-(2-thenoyl)-3,3,3-trifluoracetone, the ionic liquid 1-hexyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, and of ethanol as the dispersing solvent. After extraction and preconcentration, the sedimented ionic liquid (containing the target analytes) is collected, diluted with 1-propanol, and introduced to the ICP-OES. Effects of pH, ionic strength, ligand to metal molar ratio, volumes of extraction and disperser solvents on the performance of the microextraction were optimized in a half-fractional factorial design. The significant parameters were optimized using a face-centered central composite design. The method has detection limits between 0.10 and 0.20?ng?mL?1 of the metal ions, preconcentration factors between 79 and 102, linear responses in 0.25 to 200?ng?mL?1 concentration ranges, and relative standard deviations of 3.4 to 6.0%. The method was successfully applied to the analysis of drinking water, a fish farming pond water, and waste water from an industrial complex.
Figure
Ionic liquid based dispersive liquid-liquid microextraction of Co, Cu, Mn, Ni and Zn followed by determination via flow injection inductively coupled plasma optical emission spectrometry  相似文献   

6.
We have developed a method to investigate the interaction between DNA-targeted anthracyclines and DNA in the presence of the drug paclitaxel. It is based on resonance light scattering (RLS) and on the finding that anthracyclines when bound to DNA undergo a dramatic enhancement in their RLS intensities, while paclitaxel does not display such an effect. However, the RLS intensities of the anthracyclines-DNA associates are remarkably enhanced again on addition of paclitaxel. UV-visible spectra reveal interactions between paclitaxel and anthracyclines, but no reaction between paclitaxel and DNA. Consequently, paclitaxel, though not DNA-targeted, can improve the DNA-binding capabilities of anthracyclines. Binding constants between anthracyclines and DNA, and improved efficiency of paclitaxel on the DNA-binding capabilities of anthracyclines were calculated. The DNA binding constants of doxorubicin, epirubicin, and mitoxantrone, respectively, are 4.53?×?105?L?mol?1, 6.05?×?105?L?mol?1, and 9.47?×?105?L?mol?1. The improved values in presence of paclitaxel are 78%, 47% and 19%. We also have investigated the effects of drug concentrations and the order of adding the drugs. Displacement studies (using methylene blue as a competitive agent) provided additional information on the mechanisms of the interaction between paclitaxel and anthracyclines.
Figure
A novel resonance light scattering (RLS) method for the investigation on the interaction between anthracyclines and DNA in the presence of paclitaxel has been developed based on the enhanced RLS intensities.  相似文献   

7.
We have developed a convenient, selective and reliable method for the rapid enrichment of trace quantities of Cu(II) by using a magnetic Cu(II) ion-imprinted polymer. This is followed by their determination by FAAS. The imprints were prepared by using (a) Cu(II) ions as the template, (b) 3-aminopropyltriethoxysilane as both the functional monomer and the crosslinking agent, and (c) Fe3O4 as the magnetic component. Enrichment is carried out in a single step, and adsorbed copper ions can be separated from the sample solution by applying a strong magnet. The effects of pH, elution condition, amount of imprint, and of potentially interfering ions were evaluated. Under the optimal conditions, the detection limit and enrichment factor are 0.3?μg L?1 and 100, respectively, and the recovery is >95?%. The procedure was successfully applied in the enrichment and detection of trace copper ions in environmental water.
Figure
General procedure for preconcentration/recovery of Cu (II) ions  相似文献   

8.
We have covalently grafted phenyl-iminodiacetic acid groups onto multi-walled carbon nanotubes via a diazotation reaction. The resulting material was characterized by FT-IR and UV–vis spectroscopy, by TGA, XPS and SEM. It is shown to be a valuable solid-phase extraction adsorbent for the preconcentration of trace quantities of Fe(III), Cu(II) and Pb(II) ion from aqueous solution prior to their determination by ICP-OES. Various factors affectting the separation and preconcentration were investigated. The enrichment factor typically is 100. Under optimized experimental conditions, the maximum adsorption capacities for Fe(III), Cu(II) and Pb (II) are 64.5, 30.5 and 17.0?mg?g-1, respectively, the detection limits are 0.26, 0.15 and 0.18?ng?mL-1, and the relative standard deviations are <2.5% (n?=?6). The new adsorbent shows superior reusability and stability. The procedure was successfully applied to the determination of trace quantities of Fe(III), Cu(II) and Pb (II) in water samples.
Figure
Multiwalled carbon nanotubes grafted with phenyl-iminodiacetic acid (PIDA-MWCNTs) is prepared and employed as solid phase extraction sorbent to determinate the trace Fe(III), Cu(II) and Pb (II) in water samples. The method has been applied to the preconcentration of trace amount of Fe(III), Cu(II) and Pb (II) in water samples with satisfactory results.  相似文献   

9.
A fluorescent probe for Cu(II) ion is presented. It is based on the rhodamine fluorophore and exhibits high selectivity and sensitivity for Cu(II) ion in aqueous methanol (2:8, v/v) at pH 7.0. The response is based on a ring opening reaction and formation of a strongly fluorescent 1:1 complex. The response is reversible and linear in the range between 50?nM and 900?nM, with a detection limit of 7.0?nM. The probe was successfully applied to fluorescent imaging of Cu(II) ions in HeLa cells.
Figure
A novel fluorescent probe 1 based on a rhodamine spirolactame derivative exhibits highly selective and sensitive recognition properties toward Cu(II) in aqueous methanol (2:8, v/v) at pH 7.0 with remarkable fluorescence enhancement and clear color change, and its high cell permeability grants its application to fluorescent imaging in living cells.  相似文献   

10.
We report on a glassy carbon electrode (GCE) modified with a lead ionophore and multiwalled carbon nanotubes. It can be applied to square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) for 300?s in pH?4.5 acetate buffer containing 400?μg?L?1 of Bi(III). The ionophore-MWCNTs film on the GCE possesses strong and highly selective affinity for Pb(II) as confirmed by quartz crystal microbalance experiments. Under the optimum conditions, a linear response was observed for Pb(II) ion in the range from 0.3 to 50?μg?L?1. The limit of detection (at S/N?=?3) is 0.1?μg?L?1. The method was applied to the determination of Pb(II) in water samples with acceptable recovery.
Figure
A glassy carbon electrode modified with a lead ionophore and multiwalled carbon nanotubes is successfully applied to sensitive and selective square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) in pH?4.5 solutions containing 400?μg?L?1 of Bi(III).  相似文献   

11.
We describe an on-chip microflow injection (μFI) approach for the determination of aminoglycoside antibiotics using chemiluminescence (CL) detection. The method is based on the inhibition of the Cu(II)-catalyzed CL reaction of luminol and hydrogen peroxide by the aminoglycosides due to the formation of a complex between the antibiotic and Cu(II). The main features of the method include small sample volumes and a fast response. Syringe pumps were used to insert the sample and the reagents into the microfluidic device. CL was collected using a fiber optic bundle connected to a luminescence detector. All instrumental, hydrodynamic and chemical variables involved in the system were optimized using neomycin as the aminoglycoside model. Inhibition is proportional to the concentration of the antibiotics. The dynamic ranges of the calibration graphs obtained for neomycin, streptomycin and amikacin are 0.3–3.3, 0.9–13.7, and 0.8–8.5?μmol?L?1, and the detection limits are 0.09, 0.28 and 0.24?μmol?L?1, respectively. The precision of the methods, expressed as relative standard deviation, is in the range from 0.8 to 5.0?%. The method was successfully applied to the determination of neomycin in water samples, with recoveries ranging from 80 to 120?%.
Figure
Chemical and instrumental systems of the method  相似文献   

12.
A novel electrode was prepared that enables sensing of lead(II) ion. A suspension composed of ordered mesoporous carbon (OMC), an ionic liquid (IL), and chitosan was deposited on the highly conductive surface of a carbon ionic-liquid electrode (CILE). The surface of the sensing electrode was characterized by scanning electron microscopy and cyclic voltammetry. The new electrode can be used to determine lead(II) ion because the hydrophobic ionic liquid of the CILE can extract Pb(II), while the OMC accelerates the electron transfer rate between the electrode and Pb(II) and also strongly adsorbs Pb(II). The resulting electrode displays excellent and synergistic response to Pb(II) which is linear in the range from 0.05 to 1.4?μM, with a correlation coefficient of 0.997 and a detection limit of 25 nM.
Figure
Differential pluse anodic stripping voltammograms of 5.0?×?10?7?M Pb2+ at (1) CPE (2) CILE, (3) OMC-chitosan/CILE, (4) IL2-chitosan/CILE and (5) OMC-IL2-chitosan/CILE in 10?mM HNO3. Accumulation potential: -1.05?V, accumulation time 200?s, pulse amplitude: 50?mV, pulse width: 50?ms.  相似文献   

13.
We report on a simple and reliable method for the determination of trace cadmium ion using a glassy carbon electrode (GCE) modified with cupferron, ß-naphthol and MWCNTs. The operational mechanism consists of several steps: first, the ligand cupferron on the modified electrode reacts with Cd2+ ion to form a chelate compound. Next, this chelate is adsorbed by the carrier ß-naphthol following the principle of organic co-precipitation. Finally, the coprecipitated complex is detected by the GCE. This scheme is interesting because it combines preconcentration and electrochemical detection. Two linear responses are obtained, one in the concentration range of 5.0?×?10?11 to 1.6?×?10?8 M, the other in the range of 1.6?×?10?8 to 1.42?×?10?6 M, with a lower detection limit of 1.6?×?10?11 M. This modified GCE does not suffer from significant interferences by Cu(II), Hg(II), Ag(I), Fe(III), Pb(II), Cr(III), Zn(II), NO3?, Cl?, SO 4 2? ions and EDTA. The response of the electrode remained constant for at least 3 weeks of successive operation. The method presented here provides a new way for the simultaneous separation, enrichment, and electrochemical detection of trace cadmium ion.
Figure
Separation, enrichment and electrochemical detection of trace cadmium ion were simultaneously and synchronously carried through on the electrode modified with cupferron, ß-naphthol, and multiwalled carbon nanotubes. It shows higher selectivity, excellent sensitivity and good stability.  相似文献   

14.
The assay for alpha-fetoprotein (AFP) is based on the use of immobilized anti-AFP labeled with silver nanoparticles (AgNPs). The immunoreaction between the labeled antibody against AFP and free AFP takes place in pH 6.0 solution and leads to the formation of the respective immunocomplex which displays enhanced resonance light scattering (RLS) intensity at 480 nm. Under the optimal conditions, the intensity of the enhanced RLS is proportional to the concentration of AFP in the range from 0.10 to 50 ng mL?1, with a detection limit of 40 pg mL?1. The characteristics of RLS, the immunocomplex, the immuno response, and the optimum conditions of the immunoreaction have been investigated. The concentration of AFP in 20 serum specimens was determined by the new assay, and results are consistent with those obtained with a commercially available ELISA kit.
Figure
A new resonance light scattering assay of AFP based on silver nanoparticle and immunoreaction was developed.  相似文献   

15.
We have synthesized cadmium(II) ion-imprinted polymers (IIP) and non-imprinted polymers (NIP) using 1-(2-pyridylazo)-2-naphthol as a ligand. The materials were used to prepare a carbon paste electrode for the determination of Cd(II). Polymerization was performed with (a) methacrylic acid as a functional monomer, (b) ethyleneglycol dimethacrylate as the crosslinking monomer, and (c) 2,2′-azobis(isobutyronitrile) as the initiator. Imprinted cadmium ion was removed from the polymeric matrix using nitric acid. The measurements were carried out in an closed circuit after accumulation at ?1.2?V, this followed by electrolysis of the accumulated Cd(II) by voltammetric scanning from ?1.0 to ?0.6?V. The parameters governing the response of the electrode were studied. Under optimized conditions, the response of the electrode is linear in the range from 2.0 to 200?ng?mL?1. The detection limit is 0.31?ng?mL?1. The relative standard deviations are ±3.4 and ±2.1?% for 7 successive determinations of 20.0 and 50.0?ng?mL-1 of Cd(II), respectively. The method was applied to the determination of cadmium (II) in water and food samples.
Figure
a) Preparation of modified carbon paste b) Preparation of Cd(II)-IIP-MCPE c) Differential pulse anodic stripping voltammetry d) Voltammogram  相似文献   

16.
A new sorbent was prepared by immobilization of 2,6-diaminopyridine on activated carbon and then used as a solid-phase extractant for trace Au(III), Pd(II) and Pt(IV) before their determination by ICP-AES. Effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the potentially interfering ions were investigated. The optimum pH value is 1. The maximum static adsorption capacity for the three ions is 202.7, 38.5 and 30.1?mg?g?1, respectively. The adsorbed metal ions can be completely eluted by 2?mL of the eluent solution that contains 0.05?mol?L?1 HCl and 5% thiourea. Common other ions do not interfere. The detection limits (3??) are 0.16, 0.33 and 0.29?ng?mL?1, respectively. The relative standard deviation (RSD) was lower than 3.0% (n?=?8). The new sorbent was applied to the preconcentration of the three ions in ore and rock samples with satisfactory results.
Figure
Au(III), Pd(II), Pt(IV) are absorbed at pH 1. The maximum static adsorption capacity is 202.7, 38.5 and 30.1?mg?g?1. The eluent is 2?mL of the eluent solution that contains 0.05?mol?L?1 HCl and 5% thiourea. The relative standard deviation (RSD) was lower than 3.0% (n?=?8).  相似文献   

17.
A composite film made from a thiol-functionalized mesoporous molecular sieve and an ionic liquid is introduced for use in a voltammetric sensor for Cd(II). The electrode exhibits excellent sensitivity towards Cd(II) in showing a markedly increased stripping peak current. Following the optimization of the experimental parameters, a linear response is obtained in the concentration range from 29?nM to 0.87?mM of Cd(II). The detection limit is as low as 1.0?nM (at S/N?=?3) after an accumulation at ?1.1?V for 4?min. The method was successfully applied to determine Cd(II) in water samples. Features such as large electroactive area, fast electron transfer and low background current make this electrode a promising platform for fabricating reliable electrochemical sensors for various species, such as heavy metals and environmental pollutants.
Figure
Linear sweep voltammograms of 0.5 ??M Cd(II) in 0.1 M HAc-NaAc buffer (pH 5.5), 100 mV s?1 at: (a) bare GCE; (b) ILs film coated GCE; (c) P123-SH/ILs/GCE  相似文献   

18.
A solid phase extraction method is presented for the selective preconcentration and/or separation of trace Pb(II) on multiwalled carbon nanotubes modified with 2-aminobenzothiazole. Inductively coupled plasma optical emission spectrometry was used for detection. The effects of pH, shaking time, sample flow rate and volume, elution condition and interfering ions were examined using batch and column procedures. An enrichment factor of 100 was accomplished. Common other ions do not interfere in both the separation and determination. The maximum adsorption capacity of the sorbent at optimum conditions is 60.3?mg?g?1 of Pb(II), the detection limit (3??) is 0.27?ng?mL?1, and the relative standard deviation is 1.6% (n?=?8). The method was validated using a certified reference material, and has been applied to the determination of trace Pb(II) in water samples with satisfactory results.
Figure
2-Aminobenzothiazole modified multiwalled carbon nanotubes has been developed to separate and concentrate trace Pb(II) from aqueous samples. Parameters that affect the sorption and elution efficiency were studied in batch and column modes, and the new sorbent (MWCNTs-ABTZ) presents high selectivity and adsorption capacity for the solid phase extraction of trace Pb(II).  相似文献   

19.
A composite was prepared from copper and graphene oxide (Cu-GO) by in-situ chemical reduction of a mixture containing GO and Cu(II) ions with potassium borohydride. The morphology and structure of the composite were confirmed by various physicochemical techniques. The materials were used in a tyrosinase-based microbiosensor where the enzyme is immobilized in a biocompatible matrix consisting of poly(ortho-phenylene diamine) and Cu-GO. The composite was deposited on the surface of an 8-μm thick carbon fiber microelectrode. The role of each component in the sensing layer was systematically investigated with respect to the analytical performance of the system. In its optimal configuration, the biosensor demonstrated (a) a sensitivity of 6.1?±?3 nA mM-1 dopamine (DA), (b) a linear response to DA (with a Michaelis-Menten constant of 0.29?±?0.03 mM), (c) good selectivity over ascorbic acid and uric acid, and (d) a high blocking capacity (112.2?±?2 mM) for ascorbic acid.
Figure
Poly(o-phenylenediamine) electropolymerized carbon fiber electrode with sensitivity towards dopamine (DA) is 6.1?±?3 nA mM?1 supported by Cu-GO. The linear range for DA is 0.29?±?0.03 mM with 0.033 μM LOD and fast response time of <8 s with ascorbic acid blocking capacity of 112.2?±?2 mM AA. Studies on different ratio of Glu/Tyr revealed that 10:3 gave best overall response.  相似文献   

20.
We have developed a solid phase extraction method for the determination of cadmium ions in aqueous samples. It is based on the adsorption of Cd(II) on alumina nanoparticles coated with sodium dodecyl sulfate and modified with a newly synthesized Schiff base. Analytical parameters such as pH value, amount of adsorbent, type and concentration of eluent, flow rates of the sample and eluent, sample volume and matrix effects were optimized. Desorption is accomplished with 2?mol?L?1 nitric acid. Cd(II) was then determined by flame atomic absorption spectrometry. The maximum enrichment factor is 75. Under the optimum experimental conditions, the detection limit is 0.14???g?L?1 in original solution. The adsorption capacity of the modified sorbent is 4.90?mg?g?1 for cadmium ions. The method was applied to the determination of trace quantities of Cd(II) in water, wastewater, and biological and food samples with satisfactory results.
Figure
Schematic representation of the loading L on the alumina nanoparticles  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号