首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work, we present a fast and simple approach for detection of silver nanoparticles (AgNPs) in biological material (parsley) by solid sampling high-resolution–continuum source atomic absorption spectrometry (HR-CS AAS). A novel evaluation strategy was developed in order to distinguish AgNPs from ionic silver and for sizing of AgNPs. For this purpose, atomisation delay was introduced as significant indication of AgNPs, whereas atomisation rates allow distinction of 20-, 60-, and 80-nm AgNPs. Atomisation delays were found to be higher for samples containing silver ions than for samples containing silver nanoparticles. A maximum difference in atomisation delay normalised by the sample weight of 6.27?±?0.96 s mg?1 was obtained after optimisation of the furnace program of the AAS. For this purpose, a multivariate experimental design was used varying atomisation temperature, atomisation heating rate and pyrolysis temperature. Atomisation rates were calculated as the slope of the first inflection point of the absorbance signals and correlated with the size of the AgNPs in the biological sample. Hence, solid sampling HR-CS AAS was proved to be a promising tool for identifying and distinguishing silver nanoparticles from ionic silver directly in solid biological samples.
Figure
Fast and simple approach for direct identification and sizing of silver nanoparticles in biological material (parsley) applying solid sampling high-resolution continuum source atomic absorption spectrometry and a novel data evaluation strategy  相似文献   

2.
Microbial colonization and biofilm formation on implanted devices represent an important complication in orthopaedic and dental surgery and may result in implant failure. Controlled release of antibacterial agents directly at the implant site may represent an effective approach to treat these chronic complications. Resistance to conventional antibiotics by pathogenic bacteria has emerged in recent years as a major problem of public health. In order to overcome this problem, non-conventional antimicrobial agents have been under investigation. In this study, polyacrylate-based hydrogel thin coatings have been electrosynthesised on titanium substrates starting from poly(ethylene glycol diacrylate)–co–acrylic acid. Silver nanoparticles (AgNPs) with a narrow size distribution have been synthesized using a “green” procedure and immobilized on Ti implant surfaces exploiting hydrogel coatings’ swelling capabilities. The coatings have been characterized by XPS and SEM/EDX, while their silver release performances have been monitored by ICP–MS. The antibacterial activity of these AgNP-modified hydrogel coatings was tested evaluating in vitro inhibition growth of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli, among the most common pathogens in orthopaedic infections. Moreover, a preliminary investigation of the biocompatibility of silver-loaded coatings versus MG63 human osteoblast-like cells has been performed. An important point of strength of this paper, in fact, is the concern about the effect of silver species on the surrounding cell system in implanted medical devices. Silver ion release has been properly tuned in order to assure antibacterial activity while preserving osteoblasts’ response at the implant interface.
Figure
Silver nanoparticles-loaded PEGDA-AA hydrogel coatings for inhibition of titanium implants associated infections  相似文献   

3.
We report on the modification of a glassy carbon electrode with a composite consisting of silver nanoparticles (AgNPs), polydopamine, and graphene to give an electrochemical sensor for catechol. The composite was characterized by transmission electron microscopy, and the electrochemical behavior of catechol at the modified electrode was studied by cyclic voltammetry. The electrochemical response is greatly enhanced and thought to result from a combination of beneficial effects including the good conductivity and large surface area of the AgNPs, the high conductivity of graphene, the synergistic effects of the composite, and the increased quantity of catechol that is adsorbed on the surface of the electrode. Differential pulse voltammetric responses are proportional to the concentration of catechol between 0.5 and 240?μM levels of catechol, and the detection limit is 0.1?μM (S/N?=?3). The performance of the sensor was evaluated with catechol-spiked water samples, and recoveries range from 96.5 % to 103.1 %. The results indicated that the composite presented here is a promising substrate for use in electrochemical sensing.
Graphical abstract
We report on the modification of a glassy carbon electrode with a composite consisting of silver nanoparticles, polydopamine, and graphene to obtain an electrochemical sensor for catechol.  相似文献   

4.
We describe a simple and rapid method for colorimetric and bare-eye detection of the alkaline earth metal ions Mg(II), Ca(II), Sr(II) and Ba(II) based on the use of silver nanoparticles (AgNPs) functionalized with thioglycolic acid (TGA). The TGA ligand was self-assembled onto the AgNPs to form a probe that undergoes a color change from yellow to orange or red on exposure to the alkaline earth ions. It is presumed that the color change is a result of the aggregation of the AgNPs caused by the interaction of the bivalent ions with the carboxy groups on the AgNPs. The color change can be used for bare-eye and colorimetric determination of the alkaline earth metal ions, for example to rapidly determine water hardness.
Figure
We have developed an efficient colorimetric method for alkaline earth metal ions using silver nanoparticles functionalized with thioglycolic acid as probe. This probe selectively recognizes alkaline earth metal ions through a distinct visual color change from yellow to red.  相似文献   

5.
We have developed a surface-enhanced Raman scattering (SERS) probe for the determination of mercury(II) using methimazole-functionalized and cyclodextrin-coated silver nanoparticles (AgNPs). These AgNPs in pH 10 solution containing sodium chloride exhibit strong SERS at 502 cm?1. Its intensity strongly decreases in the presence of Hg(II). This effect serves as the basis for a new method for the rapid, fast and selective determination of trace Hg(II). The analytical range is from 0.50 μg L?1 to 150 μg L?1, and the limit of detection is 0.10 μg L?1. The influence of 11 metal ions commonly encountered in environmental water samples was found to be quite small. The method was applied to the determination of Hg(II) in spiked water samples and gave recoveries ranging from 98.5 to 105.2 % and with relative standard deviations of <3.5 % (n?=?5). The total analysis time is <10 min for a single sample.
Figure
A high-sensitive SERS probe for the determination of Hg2+ using methimazole-functionalized cyclodextrin-protected AgNPs was designed. The limit of detection is 0.10 μg L?1.  相似文献   

6.
A sensitive amperometric sensor for hydrogen peroxide (HP) was constructed that is based on a glassy carbon electrode (GCE) modified with silver nanoparticles on poly(alizarin yellow R). The polymer was electropolymerized onto the surface of the GCE by cyclic voltammetry (CV), and the AgNPs were then electrodeposited onto its surface. The electrode was characterized by scanning electron microscopy and CV, and used for amperometric determination of HP. The electrode exhibits a favorable catalytic activity towards the reduction of HP, with a linear response range from 1.0???M to 450???M and a detection limit of 0.32???M. The sensor also displays high selectivity, excellent reproducibility, and good long-term stability.
Figure
Schematic representation of the preparation process of the HP sensor and catalytic activity towards HP  相似文献   

7.
A novel amperometric uric acid biosensor was fabricated by immobilizing uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi–CNTsNF) covering an electrodeposited layer of silver nanoparticles (AgNPs) on a gold electrode (uricase/Chi–CNTsNF/AgNPs/Au). The uric acid response was determined at an optimum applied potential of ?0.35 V vs Ag/AgCl in a flow-injection system based on the change of the reduction current for dissolved oxygen during oxidation of uric acid by the immobilized uricase. The response was directly proportional to the uric acid concentration. Under the optimum conditions, the fabricated uric acid biosensor had a very wide linear range, 1.0–400 μmol L?1, with a very low limit of detection of 1.0 μmol L?1 (s/n?=?3). The operational stability of the uricase/Chi–CNTsNF/AgNPs/Au biosensor (up to 205 injections) was excellent and the storage life was more than six weeks. A low Michaelis–Menten constant of 0.21 mmol L?1 indicated that the immobilized uricase had high affinity for uric acid. The presence of potential common interfering substances, for example ascorbic acid, glucose, and lactic acid, had negligible effects on the performance of the biosensor. When used for analysis of uric acid in serum samples, the results agreed well with those obtained by use of the standard enzymatic colorimetric method (P?>?0.05).
Figure
An amperometric uric acid biosensor was developed by immobilized uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi-CNTsNF) covering an electrodeposited silver nanoparticles layer (AgNPs) on gold electrode (uricase/Chi-CNTsNF/AgNPs/Au). The uric acid response was determined at an optimal applied potential of -0.35 V vs Ag/AgCl based on the change of the reduction current for dissolved oxygen.  相似文献   

8.
Functionalized gold nanoparticles capped with polyoxometalates were prepared by a simple photoreduction technique where phosphododecamolybdates serve as reducing reagents, photocatalysts, and as stabilizers. TEM images of the resulting gold nanoparticles show the particles to have a relative narrow size distribution. Monolayer and multilayer structures of the negatively charged capped gold nanoparticles were deposited on a poly(vinyl pyridine)-derivatized indium-doped tin oxide (ITO) electrode via the layer-by-layer technique. The surface plasmon resonance band of the gold nanoparticles displays a blue shift on the surface of the ITO electrode. This is due to the substrate-induced charge redistribution in the gold nanoparticles and a change in the electromagnetic coupling between the assembled nanoparticles. The modified electrode exhibits the characteristic electrochemical behavior of surface-confined phosphododecamolybdate and excellent electrocatalytic activity. The catalysis of the modified electrode towards the model compound iodate was systematically studied. The heterogeneous catalytic rate constant for the electrochemical reduction of iodate was determined by chronoamperometry to be ca. 1.34?×?105 mol?1·L·s?1. The amperometric method gave a linear range from 2.5?×?10?6 to 1.5?×?10?3 M and a detection limit of 1.0?×?10?6 M. We believe that the functionalized gold nanoparticles prepared by this photoreduction technique are advantageous in terms of fabrication of sensitive and stable redox electrodes.
Figa
Functionalized gold nanoparticles (Au-NPs) capped with polyoxometalates were prepared by a simple photoreduction technique. The negatively charged capped Au-NPs were deposited on a poly(vinyl pyridine)-derivatized indium-doped tin oxide electrode via the layer-by-layer technique. The modified electrode exhibits the characteristic electrochemical behavior of surface-confined phosphododecamolybdate, and excellent catalytic activity.  相似文献   

9.
A glucose biosensor has been fabricated by immobilizing glucose oxidase (GOx) on unhybridized titanium dioxide nanotube arrays using an optimized cross-linking technique. The TiO2 nanotube arrays were synthesized directly on a titanium substrate by anodic oxidation. The structure and morphology of electrode material were characterized by X-ray diffraction and scanning electron microscopy. The electrochemical performances of the glucose biosensor were conducted by cyclic voltammetry and chronoamperometry measurements. It gives a linear response to glucose in the 0.05 to 0.65 mM concentration range, with a correlation coefficient of 0.9981, a sensitivity of 199.6 μA mM?1 cm?2, and a detection limit as low as 3.8 µM. This glucose biosensor exhibited high selectivity for glucose determination in the presence of ascorbic acid, sucrose and other common interfering substances. This glucose biosensor also performed good reproducibility and long-time storage stability. This optimized cross-linking technique could open a new avenue for other enzyme biosensors fabrication.
Figure
A schematic diagram for the fabrication of unhybridized TiO2 nanotube arrays glucose biosensor via optimized cross-linking technique.  相似文献   

10.
We describe a method for the determination of inorganic selenium in water samples via gas-phase chemiluminescence (GPCL). Se(IV) was first derivatized with 4-nitro-o-phenylenediamine to form 5-nitropiazselenol. The latter was decomposed by persulfate through photocatalytic oxidation to give Se(VI), which was reduced to Se(IV). Selenium hydride was generated from Se(IV) through reduction with sodium borohydride and then preconcentrated using cryotrapping. The cryotrapped hydride was evaporated and carried to a reaction chamber by a stream of helium, where it produced GPCL as a result of ozonation. The method exhibits a wide linear calibration range (from 0.5?μg?L?1 to 1.0?mg?L?1) with a detection limit of 0.12?μg?L?1 (for n?=?11), and a relative standard deviation of 3.90?% (at n?=?11) at 5.0?μg?L?1 level of selenium. The method was applied to the determination of inorganic selenium in water samples and gave satisfactory results.
Figure
A GPCL detection system is developed for the determination of inorganic selenium in water samples. By using analytical technique in this figure, such as derivatization, UV/ S2O 8 2- decomposition, stopped-flow injection and cryotrapping, the system can separate and preconcentrate the analyte from the matrix, then produce GPCL as a result of ozonation. The method was simple, sensitive with low-cost instrumentation.  相似文献   

11.
Gold nanoparticles were in-situ decorated on top of a polyaniline film (GNPs–PANI) via the direct electroreduction of the adsorbed AuCl 4 - ions on a glassy carbon electrode that previously was coated with PANI by electropolymerization. The GNPs–PANI composite and the performance of the resultant sensors were investigated in some detail. The sensor was applied to the oxidation of dopamine (DA) with improved catalytic activity. Its catalytic current showed wide linear response toward dopamine ranging from 3 to 115 μM, with a low detection limit of 0.8 μM (S/N=3). In addition, the sensor exhibits easy-operation, fast response to dopamine, as well as excellent reproducibility and stability.
Gold nanoparticles decorated polyaniline (GNPs-PANI) was prepared via electrosynthesis. The GNPs-PANI composite showed good catalytic activity toward the oxidation of dopamine.  相似文献   

12.
Ferritin was immobilized on a glassy carbon electrode with electrodeposited cobalt oxide nanoparticles, and its direct electron transfer behavior was studied. It exhibits a pair of redox peaks due to direct electron transfer between ferritin and the nanoparticles. Electrochemical parameters including the formal potential (E0??), the charge transfer coefficient (??), and the apparent heterogeneous electron transfer rate constant (ks) were determined. The sensor displays excellent biocatalytic activity in terms of reduction of hydrogen peroxide, and this was applied to electrochemical sensing of hydrogen peroxide.
Figure
In this work, cobalt oxide nanoparticles were electrodeposited on the surface of an electrode for immobilization of ferritin molecules to prepare hydrogen peroxide biosensor. The immobilized protein molecules still preserve their biological activities and have great capability in catalyzing the reduction of hydrogen peroxide.  相似文献   

13.
We have modified a glassy carbon electrode by single-step electrodeposition of graphene (GR), gold nanoparticles (AgNPs), and chitosan (CS) directly from a solution containing graphene oxide, tetrachloroauric acid, and chitosan. The surface and electrochemical properties of the film-modified electrode were investigated by SEM and TEM images. The AuNPs have a diameter of about 20 nm and are uniformly dispersed in the matrix. Combining the advantages of GR (i.e., high surface area and conductivity), of AuNPs (excellent electrical conductivity) and CS (excellent film-forming ability and good water permeability), the hybrid film effectively enhances electron-transfer and promotes the response to lead(II) ion. Under the optimum conditions, a linear relationship exists between electrical current and the concentration of lead (II) ion in the range between 0.5 to 100 μg?L-1, with a detection limit of 1 ng?L-1 (at an SNR of 3). The electrode was successfully applied to the detection of lead(II) in spiked samples of river water.
Figure
Graphene–Au nanoparticles–chitosan (GR–AuNPs–CS) was fabricated by one-step electrodeposition. The obtained GR–AuNPs–CS hybrid was used for trace analysis of the lead (II).  相似文献   

14.
We have developed a method for the determination of trace levels of total selenium in water samples. It integrates preconcentration, in-situ photoreduction and slurry photochemical vapor generation using TiO2 nanoparticles, and the determination of total selenium by AFS. The Se(IV) and Se(VI) species were adsorbed on a slurry of TiO2 nanoparticles which then were exposed to UV irradiation in the presence of formic acid to form volatile selenium species. The detection limits were improved 17-fold compared to hydride generation and 56-fold compared to photochemical vapor generation, both without any preconcentration. No significant difference was found in the limits of detection (LODs) for Se(IV) and Se(VI). The LOD is as low as 0.8 ng L?1, the precision is better than 4.5 % (at a level of 0.1 μg L?1 of selenium). The method gave good recoveries when applied to the determination of total selenium in a certified tissue reference material (DORM-3) and in spiked drinking water and wastewater samples containing high concentrations of transition and noble metal ions. It also excels by very low LODs, a significant enhancement of sample throughput, reduced reagent consumption and sample loss, and minimal interference by transition and noble metal ions.
Figure
A method integrating pre-concentration, in situ photo-reduction and slurry photochemical vapor generation by using TiO2 nanoparticles was developed for sensitive determination of total selenium in various water samples by atomic fluorescence spectrometry.  相似文献   

15.
We report on a novel non-enzymatic sensor for hydrogen peroxide (HP) that is based on a biocomposite made up from chitosan (CS), hemoglobin (Hb), and silver nanoparticles (AgNPs). The AgNPs were prepared in the presence of CS and glucose in an ultrasonic bath, and CS is found to act as a stabilizing agent. They were then combined with Hb and CS to construct a carbon paste biosensor. The resulting electrode gave a well-defined redox couple for Hb, with a formal potential of about ?0.17?V (vs. SCE) at pH?6.86 and exhibited a remarkable electrocatalytic activity for the reduction of HP. The sensor was used to detect HP by flow injection analysis, and a linear response is obtained in the 0.08 to 250?μM concentration range. The detection limit is 0.05?μM (at S/N?=?3). These characteristics, along with its long-term stability make the sensor highly promising for the amperometric determination of HP.
Figure
(A) FIA it graphs of the different concentrations of H2O2 at CS/Hb/AgNP/CPE in the PBS (pH?6.86). Applied potential: ?0.4?V. (1) 0.8?×?10?6?mol?L?1, (2) 2.4?×?10?6?mol?L?1, (3) 4?×?10?6?mol?L?1 (B) Plot of catalytic peak currents vs. the concentration of H2O2.  相似文献   

16.
We have developed a method for in-situ construction of a porous network-like silver film on the surface of a glassy carbon electrode (GCE). It is based on a galvanic replacement reaction where a layer of copper nanoparticles is first electrodeposited as a sacrificial template. The silver film formed possesses a porous network-like structure and consists of an assembly of numerous nanoparticles with an average size of 200 nm. The electrode displays excellent electrocatalytic activity, good stability, and fast response (within 2 s) toward the reduction of nitrate at a working potential of ?0.9 V. The catalytic currents linearly increase with the nitrate concentrations in the range of 0.08–6.52 mM, with a detection limit of 3.5 μM (S/N?=?3) and a repeatability of 3.4 % (n?=?5).
Figure
A facile method was developed for in situ construction of a porous network-like Ag film on a glassy carbon electrode by a galvanic replacement reaction, where a layer of Cu nanoparticles previously electrodeposited as a sacrificial template. Thus-formed Ag film displays excellent electrocatalytic activity, good stability, and fast response (within 2 s) toward nitrate reduction.  相似文献   

17.
In this paper, a simple and versatile route was introduced to prepare solid-phase microextraction coatings on the chemically inert titanium wire. Titania nanotube array film can be created on metallic substrates by electrochemical anodization in fluoride-containing electrolytes and subsequently support various secondary reactions to prepare functional surfaces. In the present work, titania nanotube array-coated titanium wire was successfully modified by nanostructured hydroxyapatite by a simple solution-based in situ chemical deposition method. This coating has a high surface-to-volume ratio with a thickness of about 10 μm. Extraction performance of the fiber was assessed on several polycyclic aromatic hydrocarbons in water solutions. The nanohydroxyapatite-coated fiber showed good precision (<7.4 %), low detection limits (1.79–4.89 ng/L), and wide linearity (0.1–200 μg/L) under the selected conditions. The repeatability of fiber to fiber was 1.9–18.2 %. The new solid-phase microextraction fiber has a lifetime of over 150 extractions due to the hydroxyapatite nanoslices uniformly and strongly deposited on the wire surface. The environmental water sample was used to test the reliability of the solid-phase microextraction–gas chromatography method; some analytes were detected and quantified.
Figure
Preparation of nanohydroxyapatite/tiatinia nantube arrry-coated SPME fiber  相似文献   

18.
The assay for alpha-fetoprotein (AFP) is based on the use of immobilized anti-AFP labeled with silver nanoparticles (AgNPs). The immunoreaction between the labeled antibody against AFP and free AFP takes place in pH 6.0 solution and leads to the formation of the respective immunocomplex which displays enhanced resonance light scattering (RLS) intensity at 480 nm. Under the optimal conditions, the intensity of the enhanced RLS is proportional to the concentration of AFP in the range from 0.10 to 50 ng mL?1, with a detection limit of 40 pg mL?1. The characteristics of RLS, the immunocomplex, the immuno response, and the optimum conditions of the immunoreaction have been investigated. The concentration of AFP in 20 serum specimens was determined by the new assay, and results are consistent with those obtained with a commercially available ELISA kit.
Figure
A new resonance light scattering assay of AFP based on silver nanoparticle and immunoreaction was developed.  相似文献   

19.
A novel glucose biosensor is presented as that based on a glassy carbon electrode modified with hollow gold nanoparticles (HGNs) and glucose oxidase. The sensor exhibits a better differential pulse voltammetric response towards glucose than the one based on conventional gold nanoparticles of the same size. This is attributed to the good biological conductivity and biocompatibility of HGNs. Under the optimal conditions, the sensor displays a linear range from 2.0?×?10?6 to 4.6?×?10?5?M of glucose, with a detection limit of 1.6?×?10?6?M (S/N?=?3). Good reproducibility, stability and no interference make this biosensor applicable to the determination of glucose in samples such as sports drinks.
Figure
A novel glucose biosensor was prepared based on glucose oxidase, hollow gold nanoparticles and chitosan modified glassy carbon electrode. The electrode showed a good response for the glucose. The sensor has been verified by the determination of glucose in sport drink  相似文献   

20.
Crosslinker-free poly(n-isopropylacrylamide) (polyNIPAM) particles produced by conventional emulsifier-free heterophase polymerisations contain gels and do not easily and completely disintegrate in water, if at all. These particles, when cooled below lower critical solution temperature (LCST) swell first and then gradually shrink, due to their slow rate of disintegration. We first show that only particles formed using very low monomer concentration, which have a low molecular weight, are fully soluble in water. Then, we describe a seeded semicontinuous route which was designed in order to be able to maintain a low monomer concentration in water in the course of reaction and control the length and location of growing chains. Nanoparticles produced via semicontinuous approach not only disintegrated in water very quickly but also dissolved in water completely as soon as LCST was reached. This finding may also find applications in technologically important processes for dissolution of macromolecules in solvents.
Figure
Schematics of dissolution of polyNIPAM nanoparticles produced via (left) batch process and (right) semicontinuous process in water when the temperature falls below LCST  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号