首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the amount of absorbed water on the physicomechanical indices (tensile modulus, tensile strength, and ultimate strain) of composites based on secondary polyethylene (SPE) of two trademarks and linen yarn production waste (LW), both with and without a coupling agent (diphenylmetane diisocyanate - DIC), is evaluated. It is shown that the strength properties considerably depend on the time of water sorption and on the blend composition. The tensile strength decreases with increased amount of absorbed water (with increased time of exposure to distilled water) and with increased content of LW in the composites. This can be explained by the plasticizing effect of water molecules, which is confirmed by the increase in the ultimate strain of specimens after their exposure to water. The slight increase in the strength observed for the systems modified with DIC is probably caused by cross-linking of the free diisocyanate in the system under the action of moisture. The diisocyanate intensifies the interfacial interaction and retards the water-sorption process. Therefore, the resulting strength indices of these systems are higher than those of the unmodified compositions.  相似文献   

2.
The effect of the amount of desorbed water on the mechanical properties of composites based on low-density polyethylene and linen yarn production waste (LW) is analyzed by statistical methods. It is shown that the amount of absorbed water decreases during the desorption process at room temperature both for specimens modified and unmodified with diphenylmethane diisocyanate (DIC.) The most sensitive to the action of water is the elastic modulus, which decreases considerably under the effect of water and is fully restored in the desorption process. The tensile strain also increases with the amount of absorbed water. It is found that the elastic modulus of the unmodified composite correlates linearly with the amount of desorbed water. Between the amount of desorbed water and the tensile strain, as well the specific work of deformation, a negative linear correlation is revealed. After water desorption, all strength and deformation characteristics of both the modified and unmodified composites are fully recovered.__________Translated from Mekhanika Kompozitnykh Materialov, Vol. 41, No. 4, pp. 515–524, July–August, 2005.  相似文献   

3.
The effect of the amount of sorbed water on the mechanical properties (tensile modulus, tensile strength, unit work of fracture, and characteristic strains) of composites based on a recycled low-density polyethylene, both unmodified and modified with diphenylmethane diisocyanate (DIC), is an a lyzed by statistical methods. The results of tensile tests are found to depend on the amount of sorbed water considerably. The elastic modulus, the unit work of fracture, and the characteristic strains correlate linearly with the amount of water. It is found that the elastic modulus drops after the sorption of water, but then, during the desorption process, it is restored gradually and reaches its initial value after a 30-day drying. This is explained by the plasticizing effect of water on composite materials containing hydrophilic natural fibers. DIC improves the interfacial interaction of the fiber-matrix interface and slows down the desorption of water. The investigations of the main deformational and strength characteristics of the unmodified and modified systems showed that the ad verse effect of water completely disappeared after a 30-day drying. The same conclusion, with a 95% probability, can be drawn from the results of an analysis of variance (ANOVA). __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 43, No. 5, pp. 626–638, September–October, 2007.  相似文献   

4.
The possibilities of utilizing wastes of linen thread production (chaffs, spinning and roving losses) in recycled polyolefin composites have been investigated. The wastes were mixed with recycled polyethylenes (produced from domestic and industrial film production wastes). The physicomechanical properties (tensile strength, bending and tensile moduli, and water resistance) and the fluidity (melt flow-behavior index) for systems with a different filler content are estimated. Almost all the composite materials obtained have satisfactory fluidity (melt flow-behavior index is not lower than 0.07–0.15 dg/min). For all types of the composites, a slight increase in tensile strength and a considerable increase (3–7 times) in bending and tensile moduli were observed. The water resistance of the composites decreased with an increase in the filler content. The modification of filled systems with diisocyanates (diphenylmethane diisocyanate) improved the useful properties and water resistance of all the composites investigated.  相似文献   

5.
The possibilities of utilizing wastes of linen thread production (chaffs, spinning and roving losses) in recycled polyolefin composites have been investigated. The wastes were mixed with recycled polyethylenes (produced from domestic and industrial film production wastes). The physicomechanical properties (tensile strength, bending and tensile moduli, and water resistance) and the fluidity (melt flow-behavior index) for systems with a different filler content are estimated. Almost all the composite materials obtained have satisfactory fluidity (melt flow-behavior index is not lower than 0.07–0.15 dg/min). For all types of the composites, a slight increase in tensile strength and a considerable increase (3–7 times) in bending and tensile moduli were observed. The water resistance of the composites decreased with an increase in the filler content. The modification of filled systems with diisocyanates (diphenylmethane diisocyanate) improved the useful properties and water resistance of all the composites investigated.Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 2, pp. 199–210, March–April, 1999.  相似文献   

6.
The possibilities of using various methods of mathematical statistics for processing and analyzing the results of deformation and strength tests on composites made from a low-density polyethylene and linen yarn production waste are evaluated. The hypothesis that the experimental strength data agree with the Gaussian distribution is examined by the Shapiro–Wilk test (W-test.) It is shown that the Gaussian distribution, both for systems unmodified and modified with diphenylmethane diisocyanate (DIC), is valid only for two parameters: the maximum tensile strength max and the elastic modulus E t. For the other parameters (the relative elongation max corresponding to max, the specific total work of failure A b), and the specific work of failure to the tensile strength A max), a non-Gaussian distribution is observed. An analysis of measurements for different specimens by the Bartlett test shows that the E t data have equal variances for both systems (with and without DIC), but for the system containing DIC, the max data have different variances. A two-factor ANOVA analysis reveals that DIC considerably affects the tensile strength and modulus of composites, but the influence of test conditions is a statistically significant factor only for the modulus. The coefficient of variation is considerably lower for max than for E t and can be used as a quantitative measure for the degree of heterogeneity of the composites investigated.  相似文献   

7.
An analysis is made of the feasibility of using wastes from the production of linen yarm (scutch, spinning and carding refuse) to modify low-density polyethylene. The effect of the composition and concentration of wastes on the processing properties (melt index), physicomechanical indices (tensile strength, elastic modulus in bending), and water resistance of composites based on low-density polyethylene is studied. It is found that the melt index decreases with an increase in the content of filler and that even a composite with a high filler content (40–50% by weight) maintains values of 0.2–0.3 g/10 min. The elastic modulus in bending increases with an increase in the content of waste, regardless of the nature of the latter. Tensile strength increases slightly and depends on the choice of filler. This result, combined with the reducation in the scatter of values of elastic modulus with an increase in filler concentration, is an indicator of the relatively high degree of heterogeneity of the systems that were studied. The water resistance of the composites decreases with an increase in filleer content. To reduce the heterogeneity of the systems, mixing should be intensified and modifiers such as stearic acid and polyisocyanates should be added.Translated from Mekhanika Kompozitnykh Materialov, Vol. 33, No. 3, pp. 408–416, May–June, 1997.  相似文献   

8.
Polymer-wood composites based on recycled polyethylene (RPE) are investigated. Dispersed alder sawdust was utilized as a filler. To improve the compatibility between the nonpolar matrix and the polar wood fibers as a reinforcement, two types of modifiers were used, which differed in their chemical nature and mechanical interaction with the constituents of the composites. The modifiers of the first type (paraffin and OP) improved the dispersibility of sawdust (SD), and those of the second type (Exxelor 1015 and OREVAC) contained groups of maleic anhydride, which interacted with the OH-groups of SD. The effect of the modifiers on the moisture sorption by SD, the dispersibility of the filler in the matrix, and the strength characteristics (ultimate strengths and moduli in tension and bending) of dry and moist RPE–SD composites and on their moisture sorption is estimated. The best results were obtained for the composites modified with paraffin, which is due to the more efficient employment of the strength and rigidity of well-dispersed SD fibers. In their strength characteristics, the RPE-based composites investigated are comparable to composites based on low-density polyethylene.  相似文献   

9.
The strength-deformation characteristics of a low-density polyethylene filled with cellulose-containing products, such as microcrystalline cellulose Thermocell, pinewood grinding dust and sawdust, and technical Thermocell obtained by a thermocatalytic method from pinewood raw materials are studied. The effect of the type of the filler and its content in the composite on the tensile strength, relative elongation, and work of failure in tension is determined. The water sorption and change in the strength-deformation characteristics of the composites during water sorption and desorption are also studied. It is found that the thermocatalytic treatment of cellulose-containing fillers makes it possible to increase the tensile strength of composites and to decrease the strength drop caused by water sorption.  相似文献   

10.
Strength-deformation characteristics of low-density polyethylene filled with microcrystalline cellulose Thermocell as a function of the TC content (up to 0.7 parts by weight) are studied. Characteristics such as elastic modulus, relative elongation at break, ultimate strength, and work of failure are determined. Water sorption and change in the size and strength-deformation characteristics of composite specimens during exposure to boiling water (560 min) are also studied. It is shown that with greater filler content it is possible to increase the strength-deformation characteristics of LDPE, such as elastic modulus and tensile strength. The growth of the ultimate strength is associated with the formation of a specific filler framework with increasing filler content. It is found that the main factors which cause a decrease in the elastic modulus and softening of the composite are failure of the filler framework as well as formation of stresses and voids during water sorption by the composite. It is demonstrated that the steady reproducibility of the composition, attainable high filling degrees, and ecological safety make Thermocell a promising filler for polyethylene.Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 1, pp. 79–90, January–February, 1999.  相似文献   

11.
The physicomechanical properties of polyvinylacetate (PVA) with small, no more than 2 wt.%, additions of carbon nanotubes (CNTs) are investigated. Data on the influence of CNT concentration on the differential scanning calorimetry thermograms, thermal destruction, electrical resistance, water vapor sorption, as well as indices of the mechanical properties of PVA/CNT (yield stress, strength, elastic modulus, ultimate elongation, and short-term creep) are reported. A variant of calculation of the elastic constants of the nanocomposite is considered with account of the effect of nanotube agglomeration.  相似文献   

12.
The results of experimental investigation of polyester resin and polymer concrete at a long-term (four-year) exposure to water and air with 98% RH are presented. The polymer concrete was composed of a polyester resin as a binder, lime flour, quartz sand, and granite chips. The resin content in concrete was 20 wt.%. The features of sorption properties of the materials investigated are discussed. Data on the water effect on the compressive strength in short-term loading are reported. The creep tests of virgin polymer-concrete specimens were carried out for five years at different stress levels from 0.11 to 0.44 of the short-term prismatic strength. The effect of moisture on the creep behavior was also studied.  相似文献   

13.
In this study, an acrylonitrile-butadiene-styrene (ABS) terpolymer was reinforced with HNO3-treated short carbon fibers (SCFs). The effects of SCF concentration on the tensile properties of the composites were examined. Increasing the SCF concentration in the ABS matrix from 10 to 30 wt.% raised its tensile strength and tensile modulus. To obtain a strong interaction at the fiber-matrix interface, polyamide-6 (PA6) at varying concentrations was introduced into the ABS/10 wt.% SCF composite. The incorporation and increasing the amount of PA6 in the ABS/PA6/SCF systems upgraded their tensile properties due to the improved adhesion at the fiber-matrix interface, which was confirmed by the growing tensile strength. These results were also supported by scanning electron micrographs of the ABS/PA6/SCF composites, which exhibited an enhanced adhesion between the SCFs and the ABS/PA6 matrix.  相似文献   

14.
The shear strength of three-layer birch veneer/polyolefin/birch veneer lap joints has been investigated. It was found that the optimum technological parameters for producing three-layer laminated systems (plywood) at 180°C were a pressure time of 1-3 min (plus 3-min preheating) and pressure of 5-10 MPa. All the systems investigated exhibited relatively high values of shear strength, which were higher than those of the industrially produced plywood based on phenol-formaldehyde glues (3.5-5 MPa). It is shown that the use of interfacial modifiers can increase the shear strength by 50% compared with its initial values. The high shear resistance is explained by the high mechanical adhesion between the hot melts and the wood substrate. After a prolonged moisture influence (70 days at relative air humidity of 80%), all the systems investigated showed a considerable (up to 25%) increase in the shear strength. This can be explained by swelling of birch veneer, which gives rise to additional resistance forces between the hot melt and the substrate.  相似文献   

15.
The relationship between the tensile strength and deformation characteristics, composition, and structural organization of films obtained by casting of two-component water-based system blends — a solution of the rigid partly crystalline polymer polyvinyl alcohol (PVA) and an emulsion of the compliant amorphous polymer polyvinyl acetate (PVAc) — has been investigated. The aim of this investigation was to ascertain the possibility of obtaining film materials with increased deformability based on the biodegradable PVA. The composition dependences of the initial modulus of elasticity, the maximum stress, yield stress, the ultimate strength, the ultimate strain, and of the unit work of fracture and other characteristics of films have been analyzed. An analysis of the tensile true stress–strain curves of systems with volume fractions of PVA less than 0.5 points to their considerable orientation strengthening upon tension.  相似文献   

16.
The effect of water on the mechanical properties (tensile modulus, ultimate tensile strength, tensile strain, and specific work at break) of both chemically treated and untreated composites based on a recycled low-density polyethylene and linen yarn production waste is analyzed. It is found that three water sorption-desorption cycles change the tensile properties of both the materials irreversibly. This effect is considered as the result of partial fracture of the fiber-matrix interface. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 6, pp. 839–848, November–December, 2007.  相似文献   

17.
Results of an experimental research into the physical, chemical, mechanical, and aesthetical changes suffered by pultruded glass-fiber-reinforced polyester profiles during their testing for accelerated aging under the action of moisture, temperature, and ultraviolet (UV) radiation are presented. The profiles were submitted to the influence of four different exposure environments: (i) in an immersion chamber, (ii) in a condensation chamber, (iii) in a QUV accelerated weathering apparatus, and (iv) in a xenon-arc accelerated weathering apparatus. The results obtained were analyzed regarding the changes in their weight, sorption ability, tensile and flexural strength characteristics, color, and gloss; the chemical changes were investigated by means of Fourier-transform infrared spectroscopy. Considerable chromatic changes were observed, especially owing to the UV radiation. Although some reduction in the mechanical properties was observed, particularly in the immersion and condensation chambers, the durability tests proved a generally good behavior of this material under the aggressive conditions considered. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 42, No. 4, pp. 463–474, July–August, 2006.  相似文献   

18.
We investigated the cyclic effect of water and the simultaneous effect of water and low temperatures on the properties of fibrous polymer composites. Methods of sorption, thermogravimetry, and mechanical tensile, bending, and interfacial shear tests were used. It was established that for carbon plastic and organite the most aggressive external factor is water, and the vulnerable link is the matrix and the reinforcing fiber. For boron plastic the aggressive factors are water and the joint effect of water and low temperatures; the vulnerable link is the fiber—matrix interface.Paper to be presented at the Ninth International Conference on the Mechanics of Composite Materials (Riga, October, 1995).Translated from Mekhanika Kompozitnykh Materialov, Vol. 31, No. 4, pp. 501–508, July–August, 1995.  相似文献   

19.
The results of a study on the strength-deformation characteristics (tensile elastic modulus, ultimate strength, elongation at break, and punching and tearing strengths) of two kinds of cellulose fiber nonwovens (CFNs) with dissimilar void content and different geometrical parameters of cellulose fibers are discussed. The structural characteristics of composites prepared by impregnation with poly(vinyl alcohol) water solutions are analyzed, too. Composites with volume fractions of polymer up to 0.4% and volume fractions of voids up to 0.3% were prepared. Filling of voids by the polymer occurred without significant changes in the structure of CFNs. The fraction of closed voids increased with polymer content.  相似文献   

20.
The change in the tensile strength and relative elongation of PM polyimide with absorbed dose has been investigated. It is shown that after irradiation with very large doses (5 · 1010 rad) the mechanical properties are still satisfactory.Scientific Research Institute of Electrophysical Apparatus, Leningrad. Translated from Mekhanika Polimerov, No. 6, pp. 1111–1112, November–December, 1969.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号