首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modern methods of recycling organic waste are not considered viable today. Therefore, an important advantage of the proposed technology is to obtain mineral fuel products as an output. The technologies of high-temperature processing are based on thermal decomposition of waste without oxygen at high temperature. In pyrolysis, wastes are converted into gaseous, liquid and solid fuels. Thereby, the properties and composition of the liquid feedstock obtained by pyrolysis with a boiling temperature in the range of X.I. (38) - 180 °C, 180 - 320 °C and more than 320 °C were investigated. Residue with a boiling temperature over 320° C (52.4% vol.) is the main portion of the synthetic liquid fuels (SLF). It can be attributed to fuel oil grade 100 and used as boiler fuel or fuel oil additives according to the studied physicochemical parameters.  相似文献   

2.
Infrared spectra (4000-250 cm-1) of the liquid, amorphous, crystalline solids and solutions in liquid krypton and Raman spectra (2500-20 cm-1) of the liquid as well as the amorphous and crystalline solids of ethylbenzene and its deuterated analogue-ethylbenzene-d(10) have been recorded. The spectra indicate that in the liquid and amorphous solids a small amount of a second conformer is present, whereas only one conformer remains in the crystalline phases. Assignments of the observed band wave numbers are discussed by comparison with normal mode wave numbers and IR and RS intensities calculated from ab initio 6-31G force fields and optimised geometries for both conformers for two species. All of the normal modes of conformers have been assigned.  相似文献   

3.
Reforming liquid fuels into hydrogen and light hydrocarbons is desirable for improving the combustion characteristics of the fuels and the production of reducing agents for applications such as the removal of nitrogen oxides. In this study, diesel, kerosene, gasoline and methane were reformed by spark discharges between needle and plate electrodes at room temperature and atmospheric pressure. The gaseous products from liquid fuels comprised 65–70 % hydrogen and 30–35 % light hydrocarbons having two carbon atoms per molecule (i.e., C2s), or three carbon atoms per molecule (i.e., C3s). The product gases were 90 % hydrogen and 10 % C2s in the case of methane reforming. The energy efficiency for the production of gaseous products was highest in the case of gasoline at 3.8 mol/kWh, followed by kerosene, diesel and methane at 3.2, 3.0, and 2.4 mol/kWh, respectively. These results were found to be comparable to those reported by others for the reforming of pure hydrocarbons by plasmas in liquids. The liquid fuels turned black due to the formation of carbonaceous products, some of which could be filtered out as solid carbon particles, but others remained dissolved and imparted color to the treated liquid.  相似文献   

4.
在众多生物基化合物中,2,5-二甲基呋喃(DMF)是一种有实用前景的可再生液体生物质燃料,也是一种具有重要价值的化学品,可作为生产对苯二甲酸的原料.2,5-二甲基四氢呋喃(DMTF)是DMF进一步加氢产物,该化合物比DMF更稳定,适合长期保存;由于具有更高的氢碳比,用作生物燃料燃烧时能够释放更多能量.研究生物质资源制备DMF和DMTF对可再生资源制备液体燃料和化学品具有重要意义.从生物质多糖出发制备这两类化合物,中间经历了水解、脱水、加氢、加氢脱氧等多个反应步骤,每一步反应都十分复杂,包含许多副反应途径.此外,由于每一步反应条件的不兼容性,大多数研究集中在分步反应阶段,鲜有文献能够实现从碳水化合物原料直接转化为DMF和DMTF.发展由生物质一锅法多步耦合转化技术制备化学品和燃料,不仅具有科学意义,而且可大大简化反应过程,避免中间产物分离和损失,节省资源和时间,历来受到化学家和工业界的关注.本文利用离子液体对Ru/C催化剂电子性质的修饰作用以及溶剂效应的影响,设计了离子液体/THF双相体系中果糖直接催化转化制备2,5-二甲基呋喃(DMF)和2,5-二甲基四氢呋喃(DMTF)的新路线.该转化过程耦合了果糖脱水制HMF、HMF加氢及加氢脱氧生成DMF和DMTF等多步反应.通常在HMF加氢转化过程中, Ru/C催化剂的高活性易导致HMF深度加氢生成大量开环产物及气体,我们借助离子液体与有机溶剂的不同溶解性,筛选出[BMIm]Cl/THF双相溶剂体系,使极性HMF在离子液体层反应,生成弱极性的DMF和DMTF能及时被THF萃取出来,有效稳定了目标产物.其次,果糖转化为HMF会产生少量水,通常水的存在易导致HMF发生水合等副反应,对下一步的加氢转化是不利因素;然而在本催化体系中,由于[BMIm]Cl能与水以较强的氢键结合形成水合物,对水分子起到了束缚作用,减少了HMF发生水解、水合等副反应的机会.另一方面,离子液体粘度较大,微量水的存在能降低离子液体层粘度,改善传质,从而提高反应速率.在HMF加氢处理过程中,离子液体对DMF和DMTF的生成起了决定作用.当反应体系中不添加离子液体,以THF为溶剂,反应结束后未检测到DMF生成, DMTF的收率仅为2%,但HMF已经完全转化.取气体样品进行GC分析,发现有部分气相产物生成,包括CO2、CH4和C2H6等.液体混合物进行GC-MS检测,发现产物主要包括DHMTF、5-甲基四氢糠醇(MTFA)、四氢糠醇(TFA)、1,2-戊二醇、DMTF、2-己醇和少量戊醇,产物中所有呋喃环结构的双键都发生加氢反应.以上结果表明,没有离子液体的THF中, Ru/C催化的HMF涉氢反应平衡已发生改变.当反应体系中添加0.2 g离子液体[BMIm]Cl进行HMF的加氢时,此时开始有DMF生成,随着[BMIm]Cl量依次增加, DMF以及DMTF的收率也呈上升趋势.1.0 g离子液体获得两种产物最高收率为68%.然而,如果进一步增加[BMIm]Cl的量到2.0 g,呋喃基液体燃料DMF和DMTF的收率却开始下降.综合以上实验结果,我们认为适量的[BMIm]Cl存在有可能会对催化剂物理化学性质造成影响,从而对产物的选择性起了决定性作用.通过对催化剂进行元素分析、XPS、H2-TPR表征以及一系列对比实验证明,离子液体不仅促进果糖脱水转化为HMF,同时在HMF选择性加氢反应中可修饰活性金属电子性质,改变催化路径,是多步串联反应能够耦合的关键因素.在[BMIm]Cl/THF双相溶剂体系中,离子液体的“溶剂笼效应”促进DMF和DMTF高效生成, THF的萃取功能对目标产物的稳定起了关键作用.以上对催化剂和溶剂的合理设计共同促进高产率呋喃基燃料的获得.该研究实现由六碳糖直接选择转化获取DMF和DMTF,为生物质高效催化转化制备生物基能源化学品提供了新思路.  相似文献   

5.
The biochemical conversion of cellulosic biomass to liquid transportation fuels includes the breakdown of biomass into its soluble, fermentable components. Pretreatment, the initial step in the conversion process, results in heterogeneous slurry comprised of both soluble and insoluble biomass components. For the purpose of tracking the progress of the conversion process, it is important to be able to accurately measure the fraction of insoluble biomass solids in the slurry. The current standard method involves separating the solids from the free liquor and then repeatedly washing the solids to remove the soluble fraction, a laborious and tedious process susceptible to operator variations. In this paper, we propose an alternative method for calculating the fraction of insoluble solids which does not require a washing step. The proposed method involves measuring the dry matter content of the whole slurry as well as the dry matter content in the isolated liquor fraction. We compared the two methods using three different pretreated biomass slurry samples and two oven-drying techniques for determining dry matter content, an important measurement for both methods. We also evaluated a large set of fraction insoluble solids data collected from previously analyzed pretreated samples. The proposed new method provided statistically equivalent results to the standard washing method when an infrared balance was used for determining dry matter content in the controlled measurement experiment. Similarly, in the large historical data set, there was no statistical difference shown between the wash and no-wash methods. The new method is offered as an alternative method for determining the fraction of insoluble solids.  相似文献   

6.
Infrared spectra (4,000-400 cm(-1)) and Raman spectra (1,700-40 cm(-1)) of the liquid and two crystalline solids of isopropylbenzene (cumene) and isopropylbenzene-d(12) have been recorded. The spectra indicate that in the liquid and crystalline solids isopropylbenzene exists in planar conformation only (CH bond is in the plane of the benzene ring). An assignment of the observed band wave numbers both isopropylbenzene and isopropylbenzene-d(12) is discussed by comparison with normal mode wave numbers and IR intensities calculated from ab initio 6-31G (d) force fields.  相似文献   

7.
Applied Biochemistry and Biotechnology - The market for liquid transportation fuels in the United States is about 610×109 L (160×109 gal) annually, with gasoline accounting for about...  相似文献   

8.
Recent advances on the use of nanocarbon-based electrodes for the electrocatalytic conversion of gaseous streams of CO2 to liquid fuels are discussed in this perspective paper. A novel gas-phase electrocatalytic cell, different from the typical electrochemical systems working in liquid phase, was developed. There are several advantages to work in gas phase, e.g. no need to recover the products from a liquid phase and no problems of CO2 solubility, etc. Operating under these conditions and using electrodes based on metal nanoparticles supported over carbon nanotube (CNT) type materials, long C-chain products (in particular isopropanol under optimized conditions, but also hydrocarbons up to C8–C9) were obtained from the reduction of CO2. Pt-CNT are more stable and give in some cases a higher productivity, but Fe-CNT, particular using N-doped carbon nanotubes, give excellent properties and are preferable to noble-metal-based electrocatalysts for the lower cost. The control of the localization of metal particles at the inner or outer surface of CNT is an importact factor for the product distribution. The nature of the nanocarbon substrate also plays a relevant role in enhancing the productivity and tuning the selectivity towards long C-chain products. The electrodes for the electrocatalytic conversion of CO2 are part of a photoelectrocatalytic (PEC) solar cell concept, aimed to develop knowledge for the new generation artificial leaf-type solar cells which can use sunlight and water to convert CO2 to fuels and chemicals. The CO2 reduction to liquid fuels by solar energy is a good attempt to introduce renewables into the existing energy and chemical infrastructures, having a higher energy density and easier transport/storage than other competing solutions (i.e. H2).  相似文献   

9.
This study was aimed to understand the physical and chemical properties of pyrolytic bio-oils produced from microwave pyrolysis of corn stover regarding their potential use as gas turbine and home heating fuels. The ash content, solids content, pH, heating value, minerals, elemental ratio, moisture content, and viscosity of the bio-oils were determined. The water content was approx 15.2 wt%, solids content 0.22 wt%, alkali metal content 12 parts per million, dynamic viscosity 185 mPa.s at 40 degrees C, and gross high heating value 17.5 MJ/kg for a typical bio-oil produced. Our aging tests showed that the viscosity and water content increased and phase separation occurred during the storage at different temperatures. Adding methanol and/or ethanol to the bio-oils reduced the viscosity and slowed down the increase in viscosity and water content during the storage. Blending of methanol or ethanol with the bio-oils may be a simple and cost-effective approach to making the pyrolytic bio-oils into a stable gas turbine or home heating fuels.  相似文献   

10.
The infrared (IR) and Raman spectra of 3,5-dimethylpyrazole have been recorded in the vapor, liquid (melt and solution) and solid states. Two deuterated derivatives, C5H7N-ND and C5D7N-NH, were also studied in solid state and in solutions. Instrumental resolution was relatively low, 2.0 cm(-1) in the IR and approximately 2.7 cm(-1) in the Raman spectra. The solids are made of cyclic hydrogen-bonded trimers. These trimers, present also in chloroform and acetone solutions, give rise to characteristic high absorption IR spectra in the 3200-2500 cm(-1) region, related to Fermi resonance involving nu(NH) vibrations. Bands from trimers are not present in water solutions but these solutions show spectral features similar in several ways to those of the trimer, attributable to solvent-bonded complexes. Evidence of H-bonding interactions with the other solvents is also visible in the high-frequency region. The two very intense bands in the Raman spectra of the solids appearing at 115 and 82 cm(-1) in the parent compound are also connected with a trimer formation. To interpret the experimental data, ab initio computations of the harmonic vibrational frequencies and IR and Raman intensities were carried out using the Gaussian 94 program package after full optimization at the RHF/6-31G* level for the three monomeric compounds as well as for three models of the trimer, with C3h, C3 and C1 symmetry. The combined use of experiments and computations allow a firm assignment of most of the observed bands for all the systems. In general, the agreement between theory and experiment is very good, with the exception of the IR and Raman intensities of some transitions. Particularly noticeable is the failure of the theoretical calculation in accounting for the high intensity of the Raman bands of the solid about 115 and 82 cm(-1).  相似文献   

11.
Biorefineries processing lignocellulose will produce chemicals and fuels from chemical constituents, cellulose, hemicelluloses, and lignin to replace fossil-derived products. Fractionation of sugarcane bagasse into three pure streams of chemical constituents was addressed through dissolution of constituents with the ionic liquids, 1-ethyl-3-methylimidazolium acetate ([EMiM]CH3COO) or 1-butyl-3-methylimidazolium methyl sulfate ([BMiM]MeSO4). Constituents were isolated from the reaction mixture with the anti-solvents acetone (ā), acetone–water (AW), and sodium hydroxide (NaOH). Delignification was enhanced by NaOH, although resulting in impure product streams. Xylose pre-extraction (75 % w/w) by dilute acid pretreatment, prior to ionic liquid treatment, improved lignin purity after anti-solvent separation. Fractionation efficiency of the combined process was maximized (84 %) by ionic liquid treatment at 125 °C for 120 min, resulting in 80.2 % (w/w) lignin removal and 76.5 % (w/w) lignin recovery. Ionic liquids achieved similar degrees of delignification, although fully digestible cellulose-rich solids were produced only by [EMiM]CH3COO treatment.  相似文献   

12.
Journal of Thermal Analysis and Calorimetry - The awareness for an effective utilization of renewable energy and alternative fuels has been increasing. As alternative fuels, both liquid and gaseous...  相似文献   

13.
A dual-bed catalytic system is proposed for the direct conversion of methane to liquid hydrocarbons. In this system, methane is converted in the first stage to oxidative coupling of methane (OCM) products by selective catalytic oxidation with oxygen over La-supported MgO catalyst. The second bed, comprising of the HZSM-5 zeolite catalyst, is used for the oligomerization of OCM light hydrocarbon products to liquid hydrocarbons. The effects of temperature (650-800℃), methane to oxygen ratio (4 10), and SiO2/Al2O3 ratio of the HZSM-5 zeolite catalyst on the process are studied. At higher reaction temperatures, there is considerable dealumination of HZSM-5, and thus its catalytic performance is reduced. The acidity of HZSM-5 in the second bed is responsible for the oligomerization reaction that leads to the formation of liquid hydrocarbons. The activities of the oligomerization sites were unequivocally affected by the SiO2/Al2O3 ratio. The relation between the acidity and the activity of HZSM-5 is studied by means of TPD-NH:j techniques. The rise in oxygen concentration is not beneficial for the C5 selectivity, where the combustion reaction of intermediate hydrocarbon products that leads to the formation of carbon oxide (CO CO2) products is more dominant than the oligomerization reaction. The dual-bed catalytie system is highly potential for directly converting methane to liquid fuels.  相似文献   

14.
We report new bis-cyclometalated cationic iridium(III) complexes [(C(^)N)(2)Ir(CN-tert-Bu)(2)](CF(3)SO(3)) that have tert-butyl isocyanides as neutral auxiliary ligands and 2-phenylpyridine or 2-(4'-fluorophenyl)-R-pyridines (where R is 4-methoxy, 4-tert-butyl, or5-trifluoromethyl) as C(^)N ligands. The complexes are white or pale yellow solids that show irreversible reduction and oxidation processes and have a large electrochemical gap of 3.58-3.83 V. They emit blue or blue-green phosphorescence in liquid/solid solutions from a cyclometalating-ligand-centered excited state. Their emission spectra show vibronic structure with the highest-energy luminescence peak at 440-459 nm. The corresponding quantum yields and observed excited-state lifetimes are up to 76% and 46 μs, respectively, and the calculated radiative lifetimes are in the range of 46-82 μs. In solution, the photophysical properties of the complexes are solvent-independent, and their emission color is tuned by variation of the substituents in the cyclometalating ligand. For most of the complexes, an emission color red shift occurs in going from solution to neat solids. However, the shift is minimal for the complexes with bulky tert-butyl or trifluoromethyl groups on the cyclometalating ligands that prevent aggregation. We report the first example of an iridium(III) isocyanide complex that emits blue phosphorescence not only in solution but also as a neat solid.  相似文献   

15.
The urea functional group is of importance in a wide range of biological compounds such as enzyme inhibitors1 and pseudopeptides2. Substituted ureas are widely applied in fine chemical industry, especially pesticides3 and pharmaceuticals4. Many investigations have been made to search for an efficient and practical method to synthesize ureas. The typical procedure for the synthesis of ureas is treating isocyanates with primary or secondary amines in organic solvents5. In the presence of trans…  相似文献   

16.
Journal of Radioanalytical and Nuclear Chemistry - Determination of fraction of biogenic component in liquid fuels by a direct radiocarbon measurement in liquid scintillation counter (direct-LSC...  相似文献   

17.
The conversion of CO2 with CH4 into liquid fuels and chemicals in a single‐step catalytic process that bypasses the production of syngas remains a challenge. In this study, liquid fuels and chemicals (e.g., acetic acid, methanol, ethanol, and formaldehyde) were synthesized in a one‐step process from CO2 and CH4 at room temperature (30 °C) and atmospheric pressure for the first time by using a novel plasma reactor with a water electrode. The total selectivity to oxygenates was approximately 50–60 %, with acetic acid being the major component at 40.2 % selectivity, the highest value reported for acetic acid thus far. Interestingly, the direct plasma synthesis of acetic acid from CH4 and CO2 is an ideal reaction with 100 % atom economy, but it is almost impossible by thermal catalysis owing to the significant thermodynamic barrier. The combination of plasma and catalyst in this process shows great potential for manipulating the distribution of liquid chemical products in a given process.  相似文献   

18.
Municipal solid waste (MSW) and sewage sludge (SS) were combined and anaerobically converted into carboxylate salts by using a mixed culture of acid-forming microorganisms. MSW is an energy source and SS is a source of nutrients. In this study, MSW and SS were combined, so they complemented each other. Four fermentors were arranged in series for a countercurrent fermentation process. In this process, the solids and liquid were transferred in opposite directions, with the addition of fresh biomass to fermentor 1 and fresh liquid media to fermentor 4. An intermediate lime treatment of solids exiting fermentor 3 before entering fermentor 4 was applied to improve the product acid concentration from the untreated MSW/SS fermentations. All fermentations were performed under anaerobic conditions at 40 degrees C. Calcium carbonate was added to neutralize the carboxylic acids and to control the pH. Iodoform was used as a methanogen inhibitor. Carboxylic acid concentration and gas composition were determined by gas chromatography. Substrate conversion was measured by volatile solids loss, and carboxylic acid productivity was calculated as the function of the total carboxylic acids produced, the amount of liquid in all fermentors, and time. The addition of intermediate lime treatment increased product concentration and conversion by approx 30 and 15%, respectively. The highest carboxylic acid concentrations for untreated MSW/SS fermentations with and without intermediate lime treatment were 22.2 and 17.7 g of carboxylic acid/L of liquid, respectively. These results confirm that adding a treatment step between fermentor 3 and fermentor 4 will increase the digestibility and acid productivity of the fermentation.  相似文献   

19.
刘军辉  宋亚坤  宋春山  郭新闻 《应用化学》2020,37(10):1099-1111
CO2加氢和费托合成反应是C1化学中重要的研究领域,CO2加氢制备高附加值化学品和燃料有助于降低大气中CO2浓度,减轻化石燃料消耗的压力;费托合成反应是以非石油资源为原料生产液体燃料和化学品的重要路径。 开发新型、高效、稳定的催化剂是CO2加氢和费托合成反应的关键点之一。 利用金属-有机骨架(Metal-Organic Frameworks,MOFs)材料的特点制备的MOFs衍生催化剂在CO2加氢和费托合成反应中具有较好的应用前景。 本文综述了CO2加氢和费托合成反应中MOFs衍生催化剂的制备方法,以及催化剂在各反应中的催化性能,并对目前所存在的问题以及今后的发展进行了总结和展望。  相似文献   

20.
The interest on energy recovery from renewable sources is increasing due to the global warming and fossil fuels limitation. Biomass thermochemical conversion methods present some significant advantages such as zero net emissions and the use of agricultural by-products. In this work, a study of the catalytic and non-catalytic pyrolysis of an exhausted olive waste was carried out. The objective was to characterize the solid, liquid and gaseous phases in terms of their energy content. Two experimental series were conducted: uncatalyzed processes, studying the influence of temperature in the range 400–900 °C; and catalyzed ones, investigating the influence of temperature (500–800 °C) and quantity of catalyst (0–100 g). Also, the dolomite effectiveness as catalyst was evaluated. For this motive, consecutive experiments, without reactivating dolomite, were carried out (0–6 runs), and the yields of solids, liquids and gases were determined. It was found that increasing temperature leads in both series to a decrease in the solid and liquid yields and to an increase in the gas yield. The presence and amount of catalyst caused a significant decrease in the liquid phase yield and a high increase in the gas phase yield giving rise to a vast rise in hydrogen production. On the other hand, the catalyst proved to be stable and did not lose activity during at least six pyrolysis cycles.Finally, as a previous step to the design of industrial installations, a kinetic study of the process was performed, based on the generation of the principal gases, considering that these are formed through parallel independent first-order reactions, with different activation energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号