首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 696 毫秒
1.
Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcalmol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively.  相似文献   

2.
We report a new "spectroscopic" potential energy surface (PES) of formaldehyde (H(2)(12)C(16)O) in its ground electronic state, obtained by refining an ab initio PES in a least-squares fitting to the experimental spectroscopic data for formaldehyde currently available in the literature. The ab initio PES was computed using the CCSD(T)/aug-cc-pVQZ method at 30 840 geometries that cover the energy range up to 44 000 cm(-1) above equilibrium. Ro-vibrational energies of formaldehyde were determined variationally for this ab initio PES by means of the program TROVE [Theoretical ROtation-Vibration Energies; S. N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 245, 126 (2007)]. The parameter values in the analytical representation of the PES were optimized in fittings to 319 ro-vibrational energies with J = 0, 1, 2, and 5. The initial parameter values in the fittings were those of the ab initio PES, the ro-vibrational eigenfunctions obtained from this PES served as a basis set during the fitting process, and constraints were imposed to ensure that the refined PES does not deviate unphysically from the ab initio one in regions of configuration space not sampled by the experimental data. The resulting refined PES, referred to as H(2)CO-2011, reproduces the available experimental J ≤ 5 data with a root-mean-square error of 0.04 cm(-1).  相似文献   

3.
Structure and properties of the IO, IO- and HOI species, which are of potential importance for the ozone destruction catalytic cycle in the troposphere, have been calculated together with the EPR, NMR and UV-visible spectra by ab initio methodology with account of spin-orbit coupling (SOC) effects. Multi-configuration self-consistent field calculations with linear and quadratic response techniques and the multi-reference configuration interaction method have been employed. Photodissociation of these species, crucial for the catalytic ozone-destruction cycle, is critically reviewed and analyzed. Calculations predict that the singlet-triplet (S-T) transition to the lowest triplet state (X1 A' --> 3A') should be responsible for the weak long-wavelength tail absorption (approximately 450-560 nm) and photodissociation of the HOI molecule. The second, more intense, band around 400 nm is produced by two overlapping S-S and S-T transitions. In order to check this assignment of the HOI photodissociation the isoelectronic IO- anion and IO radical have been studied by the same methods. Comparison with the EPR spectrum of the IO radical indicates that the methods are reliable which gives credit to the accuracy of the HOI spectral interpretation. NMR spectra of HOI and IO- molecules and some other properties are calculated for the first time.  相似文献   

4.
We report the first successful reconstruction of two-dimensional potential energy surfaces (PES) using the magnitudes and positions of a set of frequency-resolved fluorescence (or absorption) lines. The inversion proceeds by first extracting the phases of the transition-dipole matrix elements, yielding, together with the (ground) PES to (from) which emission (absorption) occurs, a point by point reconstruction of the two-dimensional excited state PES. The inversion procedure is highly accurate even for PES with multiple minima and many missing lines, with typical RMS errors <0.002 cm(-1) in the classically allowed region and <0.018 cm(-1) in the classically forbidden region.  相似文献   

5.
The heterogeneous chemistry of HOI, ICl and IBr on sea salt and sea salt proxies has been studied at 274 K using two experimental approaches: a wetted wall flow tube coupled to an electron impact mass spectrometer (WWFT-MS) and an aerosol flow tube (AFT) coupled to a differential mobility analyser (DMA) and a chemical ionisation mass spectrometer (CIMS). Uptake of all three title molecules into bulk aqueous halide salt films was rapid and controlled by gas phase diffusion. Uptake of HOI gave rise to gas-phase ICl and IBr, with the latter being the predominant product whenever Br(-) was present. Only partial release of IBr was observed due to high solubility of dihalogens in the film. ICl uptake gave the same yield of IBr as HOI uptake. Uptake of ICl on NaBr aerosol was accommodation limited with alpha = 0.018 +/- 0.004 and gas phase IBr product has a yield of 0.6 +/- 0.3. The results show that HOI can act as a catalyst for activation of bromine from sea-salt aerosols in the marine boundary layer, via the reactions: HOI(aq) + Cl + H--> ICl(aq) + H(2)O(l) and ICl(aq) + Br--> IBr(aq) + Cl.  相似文献   

6.
The singlet-triplet transformation and molecular dissociation of ozone (O(3)) gas is investigated by performing quasi-classical molecular dynamics (MD) simulations on an ab initio potential energy surface (PES) with visible and near-infrared excitations. MP4(SDQ) level of theory with the 6-311g(2d,2p) basis set is executed for three different electronic spin states (singlet, triplet, and quintet). In order to simplify the potential energy function, an approximation is adopted by ignoring the spin-orbit coupling and allowing the molecule to switch favorably and instantaneously to the spin state that is more energetically stable (lowest in energy among the three spin states). This assumption has previously been utilized to study the SiO(2) system as reported by Agrawal et al. (J. Chem. Phys. 2006, 124 (13), 134306). The use of such assumption in this study probably makes the upper limits of computed rate coefficients the true rate coefficients. The global PES for ozone is constructed by fitting 5906 ab initio data points using a 60-neuron two-layer feed-forward neural network. The mean-absolute error and root-mean-squared error of this fit are 0.0446 eV (1.03 kcal/mol) and 0.0756 eV (1.74 kcal/mol), respectively, which reveal very good fitting accuracy. The parameter coefficients of the global PES are reported in this paper. In order to identify the spin state with high confidence, we propose the use of a pattern-recognition neural network, which is trained to predict the spin state of a given configuration (with a prediction accuracy being 95.6% on a set of testing data points). To enhance the prediction effectiveness, a buffer series of five points are validated to confirm the spin state during the MD process to gain better confidence. Quasi-classical MD simulations from 1.2 to 2.4 eV of total internal energy (including zero-point energy) result in rate coefficients of singlet-triplet transformation in the range of 0.027 ps(-1) to 1.21 ps(-1). Also, we find very low dissociation probability up to 2.4 eV of internal energy during the investigating period (5 ps), which suggests that dissociation does not occur directly from the singlet ground-state, but it involves the excited triplet-state as an intermediate step and requires more reaction time to occur.  相似文献   

7.
8.
An ab initio potential energy surface (PES) of ArF2 system has been obtained by using MP4 calculation with a large basis set including bond functions. There are two local minimums on the PES: one is T-shaped and the other is L-shaped. The L-shaped minimum is the global minimum with a well depth of -119.62 cm- 1 at R = 0.3883nm. The T-shaped minimum has a well depth of -85.93cm -1 at R = 0.3486 nm. A saddle point is found at R = 0.3486 and θ = 61° with the well depth of -61.53 cm-1. The vibrational energy levels have been calculated by using VSCF-CI method. The results show that this PES supports 27 vibrational bound states, and the ground states are two degenerate states assigned to the L-type vibration.  相似文献   

9.
Iodine oxides appear as reactive intermediates in atmospheric chemistry. Here, we investigate IO and HOI by mass-selective threshold photoelectron spectroscopy (ms-TPES), using synchrotron radiation. IO and HOI are generated by photolyzing iodine in the presence of ozone. For both molecules, accurate ionization energies are determined, 9.71±0.02 eV for IO and 9.79±0.02 eV for HOI. The strong spin-spin interaction in the 3Σ ground state of IO+ leads to an energy splitting into the Ω=0 and Ω=±1 sublevels. Upon ionization, the I−O bond shortens significantly in both molecules; thus, a vibrational progression, assigned to the I−O stretch, is apparent in both spectra.  相似文献   

10.
We report a high-quality, ab initio, full-dimensional global potential energy surface (PES) for the Cl((2)P, (2)P(3/2)) + CH(4) reaction, which describes both the abstraction (HCl + CH(3)) and substitution (H + CH(3)Cl) channels. The analytical PES is a least-squares fit, using a basis of permutationally invariant polynomials, to roughly 16,000 ab initio energy points, obtained by an efficient composite method, including counterpoise and spin-orbit corrections for the entrance channel. This composite method is shown to provide accuracy almost equal to all-electron CCSD(T)/aug-cc-pCVQZ results, but at much lower computational cost. Details of the PES, as well as additional high-level benchmark characterization of structures and energetics are reported. The PES has classical barrier heights of 2650 and 15,060 cm(-1) (relative to Cl((2)P(3/2)) + CH(4)(eq)), respectively, for the abstraction and substitution reactions, in good agreement with the corresponding new computed benchmark values, 2670 and 14,720 cm(-1). The PES also accurately describes the potential wells in the entrance and exit channels for the abstraction reaction. Quasiclassical trajectory calculations using the PES show that (a) the inclusion of the spin-orbit corrections in the PES decreases the cross sections by a factor of 1.5-2.5 at low collision energies (E(coll)); (b) at E(coll) ≈ 13,000 cm(-1) the substitution channel opens and the H/HCl ratio increases rapidly with E(coll); (c) the maximum impact parameter (b(max)) for the abstraction reaction is ~6 bohr; whereas b(max) is only ~2 bohr for the substitution; (d) the HCl and CH(3) products are mainly in the vibrational ground state even at very high E(coll); and (e) the HCl rotational distributions are cold, in excellent agreement with experiment at E(coll) = 1280 cm(-1).  相似文献   

11.
The cross sections of potential energy surfaces (PES) for the S0 and S1 states were calculated by the semiempirical PM3 and PM3-CI (8 × 8) methods, respectively, along the reaction coordinate of the isomerization and cyclization of 2- and 4-styrylquinolines (SQ). The PES of the S0 state exhibits three minima separated by the transition-state barriers of isomerization and cyclization corresponding to three isomeric SQ forms, the E- and Z-isomers and the dihydrogenated cyclic product. On the PES of the S1 state, the “perpendicular minimum” at dihedral angle values of ~ 90° corresponds to the transition state of the isomerization reaction and the pericyclic minimum with a distance of 1.7–2.0 Å between the atoms involved in cyclization corresponds to the transition state of the cyclization reaction. With simultaneous scanning of the PES of the S1 state along the isomerization and cyclization reaction coordinates, the minimal-energy path was found for 4SQ, which makes it possible to explain the formation of the photocyclization product in the single-photon process upon irradiation of the E-isomer. It was found that the PM3 method overestimates the stability of the structures in which the aromatic ring is oriented perpendicular to the plane of the molecule, resulting in virtual minima on the PES of the S1 states.  相似文献   

12.
Potential energy surfaces (PESs) of the maleic acid anion radical (MA-*: cis isomer)/fumaric acid anion radical (FA-*: trans isomer) system as a model system of their esters have been studied in detail using CASSCF method. The results suggest the following: The photoisomerization is initiated with the H-C-C-H dihedral angle distortion [hydrogen out of plain (HOOP) motion] on the D1 PES. The C-C-C-C dihedral angle distortion occurs on the D0 PES after the deactivation from D1 to D0. A large fraction of the net motion along the isomerization coordinate occurs on the D0 PES. The D0 state is responsible for the one-way nature of the photoisomerization.  相似文献   

13.
A quantum mechanical investigation of the vibrational and rotational deactivation of NO(+) in collisions with He atoms in the cold and ultracold regime is presented. Ab initio potential energy calculations are carried out at BCCD(T) level and a new global 3D potential energy surface (PES) is obtained by fitting ab initio points within the reproducing kernel Hilbert space method. As a first test of this PES the bound state energies of the (3)He-NO(+) and (4)He-NO(+) complexes are calculated and compared to previous rigid rotor calculations. The efficiency of the vibrational and the rotational cooling of this molecular ion using a buffer gas of helium is then investigated by performing close coupling scattering calculations for collision energy ranging from 10(-6) to 2000 cm(-1). The calculations are performed for the two isotopes (3)He and (4)He and the results are compared to the available experimental data.  相似文献   

14.
The hydrogen abstraction reaction of the OH radical with CH(2)FCH(2)F (HFC-152) is studied theoretically over the 150-3000 K temperature range. In this study, the two most recently developed hybrid density functional theories, namely, BB1K and MPWB1K, are applied, and their efficiency in reaction dynamics calculation is discussed. The BB1K/6-31+G(d,p) method gives the best result for the potential energy surface (PES) calculations, including barrier heights, reaction path information (the first and second derivatives of PES), geometry of transition state structures, and even weak hydrogen bond orientations. The rate constants were obtained by the dual-level direct dynamics with the interpolated single-point energy method (VTST-ISPE) using the BB1K/MG3S//BB1K/6-31+G(d,p) quantum model. The canonical variational transition state theory (CVT) with the small-curvature tunneling correction methods are used to calculate the rate constants in comparison to the experimental data. The total rate constant and its temperature dependency in the form of a fitted three-parameter Arrhenius expression is k(T) = 5.4 x 10(-13)(T/298)3.13 exp{-322/T} cm3 molecule(-1) s(-1). A significant variational effect, which is not common generally for hydrogen-transfer reactions, is reported and analyzed.  相似文献   

15.
The potential energy surface (PES) of CN2H rotation of the encapsulated 1-bicyclo[2.2.1]heptyldiazirine (BHD) inside a molecular container: Cram’s hemicarcerand (CH) was explored using two different DFT involved ONIOM methods: B3LYP/6-31G**//ONIOM(B3LYP/6-31G*: AM1) and B971/6-31G**//ONIOM(B971/6-31G*: AM1). The free-state PES of CN2H rotation was also calculated, respectively by B3LYP/6-31G**//B3LYP/6-31G* and B971/6-31G**//B971/6-31G* methods for comparison. The findings in this study have shown that the PES profiles differ from each other notably in the two states. In the encapsulated state the rotation barrier corresponding to the free-state conversion with the largest rotation barrier increases by about 2 kcal/mol, which has exceeded the largest rotation barrier in the free-state. The conformational preference behavior towards certain BHD isomers, which might be in better conformational compatibility with the container, has been demonstrated.  相似文献   

16.
Full-dimensional (multilayer) multi-configurational time-dependent Hartree calculations studying the intramolecular proton transfer in malonaldehyde based on a recent potential energy surface (PES) [Wang et al., J. Chem. Phys. 128, 224314 (2008)] are presented. The most accurate calculations yield a ground state tunneling splitting of 23.8 cm(-1) and a zero point energy of 14,678 cm(-1). Extensive convergence tests indicate an error margin of the quantum dynamics calculations for the tunneling splitting of about 0.2 cm(-1). These results are to be compared with the experimental value of the tunneling splitting of 21.58 cm(-1) and results of Monte Carlo calculations of Wang et al. on the same PES which yielded a zero point energy of 14,677.9 cm(-1) with statistical errors of 2-3 cm(-1) and a tunneling splitting of 21.6 cm(-1). The present data includes contributions resulting from the vibrational angular momenta to the tunneling splitting and the zero point energy of 0.2 cm(-1) and 2.4 cm(-1), respectively, which have been computed using a perturbative approach.  相似文献   

17.
Six-dimensional quantum dynamical calculations are reported for the dissociative chemisorption of (v=0, 1, j=0) H(2) on Cu(100), and for rovibrationally inelastic scattering of (v=1, j=1) H(2) from Cu(100). The dynamics results were obtained using a new potential-energy surface (PES5), which was based on density-functional calculations using a slab representation of the adsorbate-substrate system and a generalized gradient approximation to the exchange-correlation energy. A very accurate method (the corrugation reducing procedure) was used to represent the density-functional theory data in a global potential-energy surface. With the new, more accurately fitted PES5, the agreement between the dynamics results and experimental results for reaction and rovibrationally elastic scattering is not as good as was obtained with a previous potential-energy surface (PES4), which was based on a subset of the density-functional theory data not yet including the results for the low-symmetry Cu sites. Preliminary density-functional theory results suggest that the agreement between theory and experiment will improve over that obtained with PES5 if the density-functional calculations are repeated using a larger basis set and using more copper layers than employed in PES4 and PES5.  相似文献   

18.
The reaction N+NO-->N(2)+O was studied by means of the time-dependent real wave-packet (WP) method and the J-shifting approximation. We consider the ground 1 (3)A(") and first excited 1 (3)A(') triplet states, which correlate with both reactants and products, using analytical potential energy surfaces (PESs) recently developed in our group. This work extends our previous quantum dynamics study, and probabilities, cross sections, and rate constants were calculated and interpreted on the basis of the different shapes of the PESs (barrierless 1 (3)A(") and with barrier 1 (3)A(') surfaces, respectively). The WP rate constant (k(1)) shows a weak dependence on T(200-2500 K), as the dominant contribution to reactivity is provided by the barrierless ground PES. There is a good agreement of WP k(1) with the measurements and variational transition state theory (VTST) data, and also between the WP and VTST k(1)(1 (3)A(")) results. Nevertheless, there is a large discrepancy between the WP and VTST k(1)(1 (3)A(')) results. Product state distributions were also calculated for the much more reactive 1 (3)A(") PES. There is an excellent agreement with the experimental average fraction of vibrational energy in N(2)(25+/-3%), the only measured dynamics property of this reaction.  相似文献   

19.
A new potential energy surface (PES) for the quintet state of rigid O(2)((3)Sigma(g)(-)) + O(2)((3)Sigma(g)(-)) has been obtained using restricted coupled-cluster theory with singles, doubles, and perturbative triple excitations [RCCSD(T)]. A large number of relative orientations of the monomers (65) and intermolecular distances (17) have been considered. A spherical harmonic expansion of the interaction potential has been built from the ab initio data. It involves 29 terms, as a consequence of the large anisotropy of the interaction. The spherically averaged term agrees quite well with the one obtained from analysis of total integral cross sections. The absolute minimum of the PES corresponds to the crossed (D(2d)) structure (X shape) with an intermolecular distance of 6.224 bohrs and a well depth of 16.27 meV. Interestingly, the PES presents another (local) minimum close in energy (15.66 meV) at 6.50 bohrs and within a planar skewed geometry (S shape). We find that the origin of this second structure is due to the orientational dependence of the spin-exchange interactions which break the spin degeneracy and leads to three distinct intermolecular PESs with singlet, triplet, and quintet multiplicities. The lowest vibrational bound states of the O(2)-O(2) dimer have been obtained and it is found that they reflect the above mentioned topological features of the PES: The first allowed bound state for the (16)O isotope has an X structure but the next state is just 0.12 meV higher in energy and exhibits an S shape.  相似文献   

20.
A global potential energy surface (PES) for the electronic ground state of the BrH(2) system was constructed based on the multireference configuration interaction (MRCI) method including the Davidson's correction using a large basis set. In addition, the spin-orbit correction were computed using the Breit-Pauli Hamiltonian and the unperturbed MRCI wavefunctions in the Br + H(2) channel and the transition state region. Adding the correction to the ground state potential, the lowest spin-orbit correlated adiabatic potential was obtained. The characters of the new potential are discussed. Accurate initial state specified rate constants for the H + HBr → H(2) + Br abstraction reaction were calculated using a time-dependent wave packet method. The predicted rate constants were found to be in excellent agreement with the available experimental values and much better than those obtained from a previous PES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号