首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The multiconfigurational spin tensor electron propagator method (MCSTEP) was developed as an implementation of electron propagator/single particle Green's function methods. MCSTEP was specifically designed for open shell and highly correlated (nondynamically correlated) initial states. The initial state used in MCSTEP is typically a small complete active space (CAS) with multiconfigurational self‐consistent field (MCSCF) state. In some cases, because of our use of a small CAS in MCSTEP, the Lagrangian eigenvalues of the MCSCF reference state are in an undesired order (u). The desired order (d) can usually be obtained by excluding one or more orbital rotations in MCSCF optimization between the doubly occupied and partially occupied orbitals. We systematically examine several cases where the undesired order occurs for the low‐lying vertical MCSTEP ionization potentials (IPs) of the molecules CO, HCN, HNC, H2CO, and O3 with our recently established CAS choices for MCSCF/MCSTEP. By excluding one or more orbital rotations between the partially and doubly occupied orbitals, an approximate MCSCF reference state with the same CAS choice is obtained for use in standard MCSTEP calculations that, in general, gives more reliable vertical MCSTEP IPs. © 2007 Wiley Periodicals, Inc. J Quantum Chem, 2008  相似文献   

2.
Generalized van Vleck perturbation theory (GVVPT2) for molecular electronic structures is applied to examine the azabenzene series: benzene, pyridine, pyrazine, symmetric triazine and symmetric tetrazine. The spectra of azabenzenes are complex with large numbers of excited states at low energies comprising n --> pi* and pi --> pi* excited states and also doubly excited states of the n,n --> pi*,pi* type. The calculations are complicated due to strong correlation effects in the nitrogen lone-pair orbitals and the pi electrons. This study is the first to use GVVPT2 on conjugated systems. Comparison is made with experimental data and complete active space second-order perturbation theory, equation of motion coupled cluster and similarity transformed equation of motion coupled cluster theory data. Using polarized valence double split basis sets for benzene and pyrazine (cc-pVDZ) and pyridine (ANO-S) and polarized triple split basis sets (ANO-L) for triazine and tetrazine, the n --> pi* and pi --> pi* states are computed with an average error of 0.28 eV in comparison with available experimental data.  相似文献   

3.
The theory of MCSCF and CI energy derivatives with respect to geometrical variations is briefly reviewed with special attention given to the MCSCF and MRCI energy gradients. A computational procedure is proposed for MRCI energy gradients that does not require the solution to any “coupled-perturbed MCSCF ” equations, it does not require any expensive direct-CI matrix-vector products involving derivative integrals, and it does not require any derivative integrals to be transformed from the AO basis to the MO basis. An additional feature is that it does not require any changes to existing MCSCF gradient evaluation programs in order to compute MRCI gradients. The only difference in the two cases is the exact nature of the data passed to the gradient evaluation program from the previous steps in the computational procedure. The additional effort required to compute the entire MRCI energy gradient vector is approximately that required for one additional iteration of the MRCI diagonalization procedure and for one additional MCSCF iteration. For large scale MRCI wave functions, the MRCI energy gradient evaluation should only require about 10% of the effort of computing the wave function itself. This computational procedure removes a major computational botleneck of potential energy surface evaluation.  相似文献   

4.
The difficulties of the SCF and MCSCF calculations on excited states have been reviewed. Three constraint variational methods are then developed which can perform the SCF and MCSCF calculations on excited states in the scheme of the generalized Brillouin theorem method. The proper constraints and the ways to incorporate the constraints into the variational calculations on excited states have been studied and the comparison with other approaches have been accessed.  相似文献   

5.
Second-order multiconfigurational self-consistent field (MCSCF ) calculation has been programmed on the basis of CNDO /INDO molecular orbital bases, in which the configuration space employed is restricted within pair-excitations. Test calculations have been carried out for 17 small molecules. All the MCSCF ground states of these molecules have been successfully converged to their respective optimal states by employing a simple weighting scheme. This procedure provides a great savings in computer time. The MCSCF calculation on azetidine required only 27 min on a HITAC M-680H. The MCSCF energies of HF, F2, and BH show improved behaviors up to large atomic distances (~7au).  相似文献   

6.
We report a theoretical study of the stretching of chemical bonds and its implications on the force-field parametrization. Computations were performed at the SCF and MCSCF levels by using minimal, split-valence, and large extended and polarized basis sets. The stretching energy profiles were determined considering up to 25 perturbed geometries of 11 different bonds (6 singles, 2 doubles, and 3 triples). The energy profiles and stretching parameters are compared with the experimental data compiled in the most popular force fields. MCSCF stretching energy profiles are mainly anharmonic and can be only roughly reproduced by quadratic equations. The use of Allinger's MM2 quasiharmonic expression appears as the best choice because it fits with reasonable accuracy a large percentage of the stretching profile without increasing the complexity of the formalism and of the parametrization procedure. MCSCF computations are needed to obtain reliable stretching force parameters. In this respect, MCSCF calculations considering as active space only the bonded and nonbonded orbitals of the perturbed bond seems to be the best strategy to obtain good results at a minimum computational cost, especially if small split-valence basis sets like the 3-21G are used. Results obtained at this level of sophistication are completely comparable to stretching parameters compiled on empirical force fields. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
The multiconfigurational spin tensor electron propagator method (MCSTEP) was developed as an implementation of electron propagator/single particle Green's function methods for ionization potentials (IPs) and electron affinities (EAs). MCSTEP was specifically designed for open shell and highly correlated (nondynamically correlated) initial states. For computational efficiency the initial state used in MCSTEP is typically a small complete active space (CAS) multiconfigurational self‐consistent field (MCSCF) state. If in a molecule there are some degenerate orbitals which are not fully or half occupied, usual MCSCF calculations will make these orbitals inequivalent, i.e., the occupied ones will be different from the nonoccupied ones, so that the degeneracy is broken. In this article, we use a state averaged MCSCF method to get equivalent orbitals for the initial state and import the integrals into the subsequent MCSTEP calculations. This gives, in general, more reliable MCSTEP vertical IPs. © 2008 Wiley Periodicals, Inc., 2008  相似文献   

8.
MCSCF and MRCI calculations on the first three singlet states of trans-1,3-butadiene are presented. Flexible basis sets were applied and full geometry optimization was carried out at the MCSCF level for planar and selected non-planar structures including twisting and pyramidalization of terminal CH2-groups. Geometry relaxations in and excitation energies to 1 1Bu and 2 1Ag states are discussed in detail. For planar structures the covalent 2 1Ag state is lower in energy than the 1 1Bu state. If non-planar geometry relaxations are allowed, the lowest lying non-planar excited singlet state turns out to be ionic with one terminal CH2 group rotated by 90°. Limitations of the current investigations due to restrictions in the MRCI treatment and because of incomplete scanning of excited state surfaces are pointed out.  相似文献   

9.
The efficacy of several multiconfiguration self-consistent field (MCSCF) methods in the subsequent spin-orbit coupling calculations was studied. Three MCSCF schemes to generate molecular orbitals were analyzed: state-specific, state-averaged, and dynamically weighted MCSCF. With Sn(2)(+) as the representative case, we show that the state-specific MCSCF orbitals lead to discontinuities in potential energy curves when avoided crossings of electronic states occur; this problem can be solved using the state-averaged or dynamically weighted MCSCF orbitals. The latter two schemes are found to give similar results when dynamic electron correlation is considered, which we calculated at the level of multiconfigurational quasidegenerate perturbation theory (MCQDPT). We employed the recently developed Douglas-Kroll spin-orbit adapted model core potential, ZFK3-DK3, and the dynamically weighted MCSCF scheme to calculate the spectroscopic constants of the mono-hydrides and compared them to the results obtained using the older set of potentials, MCP-TZP. We also showed that the MCQDPT tends to underestimate the dissociation energies of the hydrides and discussed to what extent coupled-cluster theory can be used to improve results.  相似文献   

10.
The fragment molecular orbital (FMO) method was combined with the multiconfiguration self-consistent-field (MCSCF) theory. One- and two-layer approaches were developed, the former involving all dimer MCSCF calculations and the latter limiting MCSCF calculations to a small part of the system. The accuracy of the two methods was tested using the six electrons in six orbitals complete active space type of MCSCF and singlet spin state for phenol+(H(2)O)(n), n=16,32,64 (6-31G( *) and 6-311G( *) basis sets); alpha helices and beta strands of phenylalanine-(alanine)(n), n=4,8,16 (6-31G( *)). Both double-zeta and triple-zeta quality basis sets with polarization were found to have very similar accuracy. The error in the correlation energy was at most 0.000 88 a.u., the error in the gradient of the correlation energy was at most 6.x10(-5) a.u./bohr and the error in the correlation correction to the dipole moment was at most 0.018 D. In addition, vertical singlet-triplet electron excitation energies were computed for phenol+(H(2)O)(n), (n=16,32,64), 6-31G( *), and the errors were found to be at most 0.02 eV. Approximately linear scaling was observed for the FMO-based MCSCF methods. As an example, an FMO-based MCSCF calculation with 1262 basis functions took 98 min on one 3.0 GHz Pentium4 node with 1 Gbyte RAM.  相似文献   

11.
We present a method to calculate both normal Raman-scattering (NRS) and resonance Raman-scattering (RRS) spectra from the geometrical derivatives of the frequency-dependent polarizability. In the RRS case, the polarizability derivatives are calculated from resonance polarizabilities by including a finite lifetime of the electronic excited states using time-dependent density-functional theory. The method is a short-time approximation to the Kramers, Heisenberg, and Dirac formalism. It is similar to the simple excited-state gradient approximation method if only one electronic excited state is important, however, it is not restricted to only one electronic excited state. Since the method can be applied to both NRS and RRS, it can be used to obtain complete Raman excitation profiles. To test the method we present the results for the S2 state of uracil and the S4, S3, and S2 states of pyrene. As expected, the results are almost identical to the results obtained from the excited-state gradient approximation method. Comparing with the experimental results, we find in general quite good agreement which enables an assignment of the experimental bands to bands in the calculated spectrum. For uracil the inclusion of explicit waters in the calculations was found to be necessary to match the solution spectra. The calculated resonance enhancements are on the order of 10(4)-10(6), which is in agreement with experimental findings. For pyrene the method is also able to distinguish between the three different electronic states for which experimental data are available. The neglect of anharmonicity and solvent effects in the calculations leads to some discrepancy between theory and experiment.  相似文献   

12.
In the present work we have proposed an approximate time-dependent density-functional theory (TDDFT) formalism to deal with the influence of spin-orbit coupling effect on the excitation energies for closed-shell systems. In this formalism scalar relativistic TDDFT calculations are first performed to determine the lowest single-group excited states and the spin-orbit coupling operator is applied to these single-group excited states to obtain the excitation energies with spin-orbit coupling effects included. The computational effort of the present method is much smaller than that of the two-component TDDFT formalism and this method can be applied to medium-size systems containing heavy elements. The compositions of the double-group excited states in terms of single-group singlet and triplet excited states are obtained automatically from the calculations. The calculated excitation energies based on the present formalism show that this formalism affords reasonable excitation energies for transitions not involving 5p and 6p orbitals. For transitions involving 5p orbitals, one can still obtain acceptable results for excitations with a small truncation error, while the formalism will fail for transitions involving 6p orbitals, especially 6p1/2 spinors.  相似文献   

13.
We present a novel pathway analysis of super-exchange electronic couplings in electron transfer reactions using localized molecular orbitals from multi-configuration self-consistent field (MCSCF) calculations. In our analysis, the electronic coupling and the tunneling pathways can be calculated in terms of the configuration interaction (CI) Hamiltonian matrix obtained from the localized MCSCF wave function. Making use of the occupation restricted multiple active spaces (ORMAS) method can effectively produce the donor, acceptor, and intermediate configuration state functions (CSFs) and CIs among these CSFs. In order to express the electronic coupling as a sum of individual tunneling pathways contributions, we employed two perturbative methods: L?wdin projection-iteration method and higher-order super-exchange method. We applied them to anion couplings of butane-1,4-diyl and pentane-1,5-diyl. The results were (1) the electronic couplings calculated from the two perturbative methods were in reasonable agreement with those from a non-perturbative method (one-half value of the energy difference between the ground and first excited states), (2) the main tunneling pathways consisted of a small number of lower-order super-exchange pathways where bonding, anti-bonding, or extra-valence-shell orbitals were used once or twice, and (3) the interference among a huge number of higher-order super-exchange pathways significantly contributed to the overall electronic coupling, whereas each of them contributed only fractionally. Our method can adequately take into account both effects of non-dynamical electron correlation and orbital relaxation. Comparing with the analyses based on the Koopmans' theorem (ignoring both effects) and the ORMAS-CIs from frozen localized reference orbitals (ignoring the effect of orbital relaxation), we discuss these effects.  相似文献   

14.
The problem of determining SCF wave functions for excited electronic states is examined for singlet states of two-electron systems using a Lowdin natural orbital transformation of the full CI wave function. This analysis facilitates the comparison of various SCF methods with one another. The distribution of the full CI states among the natural orbital MCSCF states is obtained for the S states of helium using a modest Gaussian basis set. For SCF methods that are not equivalent to the full CI wave functions, it is shown that the Hartree-Fock plus all single excitation wave functions are equivalent to that of Hartree-Fock plus one single excitation. It is further shown that these wave functions are equivalent to the perfect pair or TCSCF wave functions in which the CI expansion coefficients are restricted to have opposite signs. The case of the natural orbital MCSCF wave function for two orbitals is examined in greater detail. It is shown that the first excited state must always be found on the lower natural orbital MCSCF CI root, thus precluding the use of the Hylleras-Undeim-MacDonald (HUM) theorem in locating this state. It is finally demonstrated that the solution obtained by applying the HUM theorem (minimizing the upper MCSCF CI root with respect to orbital mixing parameters) is an artifact of the MCSCF method and does not correspond to any of the full CI states.  相似文献   

15.
The Einstein coefficient for the singlet oxygen emission a1Deltag-->X3Sigmag- at lambda=1270 nm and b1Sigmag+-->X3Sigmag- emission at lambda=750 nm were calculated by quadratic response (QR) multiconfiguration self-consisted field (MCSCF) method for a number of collision complexes O2+M, where M=He, Ne, Ar. Interaction with He clusters was studied in order to simulate cooperative effect of the environment on the oxygen emission. Calculations of the dipole transition moment for the Noxon band, b1Sigmag+-a1Deltag, by linear response (LR) MCSCF method were also performed for a number of collision complexes. Spin-orbit coupling (SOC) between the b1Sigmag+ and X3Sigmag- (MS=0) states does not change much upon collisions, thus the a-X transition borrows intensity mostly from the collision-induced Noxon band b-a. The a-X intensity borrowing from the Schumann-Runge transition is negligible. The calculations show that the b-a and a-X transition probabilities are enhanced approximately by 10(5) and 10(3) times by O2+M collisions. An order of magnitude differences occur for both transitions for noble gases with large difference in polarizability. A strong cooperative effect is obtained when few He atoms perturb the oxygen molecule. Depending on mutual orientation of the partners it can be a complete quenching of the a-->X emission or strong non-additive enhancement. Collision-induced infrared vibrational transitions in a number of molecular oxygen excited states were studied and shown to be state selective.  相似文献   

16.
Potential energy surfaces, properties, and spectra of singlet (X1A1) and triplet (a3B2) ozone are investigated by means of MCSCF /MCLR analytical response theory calculations. MCSCF analytical gradients and Hessians are used to locate equilibrium and transition-state structures and to obtain associated vibrational and rotational constants, infrared intensities, and dipole moments. By means of MC linear response functions, electronic excitation energies, and oscillator strengths, static and dynamic polarizabilities as well as dispersion (C6) coefficients are obtained. Good agreement is achieved, in some cases within experimental error margins, for properties where experimental data are known. A very low IR intensity for triplet ozone is predicted.  相似文献   

17.
A general strategy to calculate potential curves at multiconfigurational self-consistent field (MCSCF) level for inner-shell states is reported in this paper. Convergence is commonly very tough for inner-shell states, especially at this level of calculation, due to the problem of variational collapse of the inner-shell wave function to the ground or to a low-lying excited state. The present method allows to avoid this drawback by a sequence of constrained optimization in the orbital mixing step. The specific states studied are that resulting from transitions X (1)Σ(+) → (C 1s(-1) π(?)) (1,3)Π of CO. Accurate values are achieved for transition energies and vibrational splittings. A comparison is made with other approach, i.e., inner-shell CI based on a MCSCF wave function optimized for ground or low-lying excited states. This last approach is shown to fail in describing the whole potential curve.  相似文献   

18.
Multireference perturbation theory (MRPT) with multiconfigurational self-consistent field (MCSCF) reference functions is applied to the calculations of core-electron binding energies (CEBEs) of atoms and molecules. Orbital relaxations in a core-ionized state and electron correlation are both taken into account in a conventional MCSCF-MRPT procedure. In the MCSCF calculation, the target core ionized state is directly optimized as an excited state and this treatment can completely prevent a variational collapse. Multireference Moller-Plesset perturbation theory and multiconfigurational self-consistent field reference quasidegenerated perturbation theory were used to treat electron correlation. The present method quite accurately reproduced the 1s CEBEs of CH4, NH3, H2O, and FH; the average deviation from the experimental data is 0.11 eV using Ahlrichs' VTZ basis set. The C 1s and O 1s CEBEs of formic acid and acetic acid were calculated and the results are consistent with the bonding characters of the atoms in these molecules. The present procedure can also be applied to CEBEs of higher angular momentum orbitals by including spin-orbit coupling. The calculated CEBEs of Ar 2p, HCl 2p, Kr 3d, and HBr 3d are in reasonable agreement with the available experimental values. In the calculation of the 3d CEBEs, a relativistic correction significantly improves the agreements. The effect of polarization functions is also discussed.  相似文献   

19.
Contracted atomic basis sets have been constructed from ANOs in order to describe the ground and excited states of C and N and their anions. Application is given with the MCSCF calculation of the vibration frequency of CN and of other spectroscopic constants. A procedure is proposed to do MCSCF calculations when some problems of convergence arise.  相似文献   

20.
Ab initio electronic structure calculations are reported for five electronic states of the methylene amidogen radical. Structure parameters for the ground electronic state are predicted by RHF and D -MBPT (4) calculations. Vertical excitation energies were determined using four different theoretical chemical models: complete active space (CAS ) MCSCF , CAS /MCSCF plus singles and doubles Cl, fourth-order many-body perturbation theory SDQ -MBPT (4), and coupled-cluster theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号