首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate by molecular dynamics simulations a continuous isotropic core-softened potential with attractive well in three dimensions, introduced by Franzese [J. Mol. Liq. 136, 267 (2007)], that displays liquid-liquid coexistence with a critical point and waterlike density anomaly. Besides the thermodynamic anomalies, here we find diffusion and structural anomalies. The anomalies, not observed in the discrete version of this model, occur with the same hierarchy that characterizes water. We discuss the differences in the anomalous behavior of the continuous and the discrete model in the framework of the excess entropy, calculated within the pair correlation approximation.  相似文献   

2.
In this paper we present a simulation study of water-like anomalies in core-softened system introduced in our previous papers. We investigate the anomalous regions for a system with the same functional form of the potential but with different parameters and show that the order of the region of anomalous diffusion and the region of density anomaly is inverted with increasing the width of the repulsive shoulder.  相似文献   

3.
In the present article we carry out a molecular dynamics study of the core-softened system and show that the existence of the water-like anomalies in this system depends on the trajectory in P-ρ-T space along which the behavior of the system is studied. For example, diffusion and structural anomalies are visible along isotherms as a function of density, but disappears along the isochores and isobars as a function of temperature. On the other hand, the diffusion anomaly may be seen along adiabats as a function of temperature, density, and pressure. It should be noted that it may be no signature of a particular anomaly along a particular trajectory, but the anomalous region for that particular anomaly can be defined when all possible trajectories in the same space are examined (for example, signature of diffusion anomaly is evident through the crossing of different isochors. However, there is no signature of diffusion anomaly along a particular isochor). We also analyze the applicability of the Rosenfeld entropy scaling relations to this system in the regions with the water-like anomalies. It is shown that the validity of the Rosenfeld scaling relation for the diffusion coefficient also depends on the trajectory in the P-ρ-T space along which the kinetic coefficients and the excess entropy are calculated.  相似文献   

4.
Using molecular dynamic simulations, we study three families of continuous core-softened potentials consisting of two length scales: a shoulder scale and an attractive scale. All the families have the same slope between the two length scales but exhibit different potential energy gap between them. For each family three shoulder depths are analyzed. We show that all these systems exhibit a liquid-liquid phase transition between a high density liquid phase and a low density liquid phase ending at a critical point. The critical temperature is the same for all cases suggesting that the critical temperature is only dependent on the slope between the two scales. The critical pressure decreases with the decrease of the potential energy gap between the two scales suggesting that the pressure is responsible for forming the high density liquid. We also show, using the radial distribution function and the excess entropy analysis, that the density, the diffusion, and the structural anomalies are present if particles move from the attractive scale to the shoulder scale with the increase of the temperature indicating that the anomalous behavior depends only in what happens up to the second coordination shell.  相似文献   

5.
Using molecular dynamic simulations, we study a system of particles interacting through a continuous core-softened potentials consisting of a hard core, a shoulder at closest distances, and an attractive well at further distance. We obtain the pressure-temperature phase diagram of this system for various depths of the tunable attractive well. Since this is a two length scale potential, density, diffusion, and structural anomalies are expected. We show that the effect of increasing the attractive interaction between the molecules is to shrink the region in pressure in which the density and the diffusion anomalies are present. If the attractive forces are too strong, particle will be predominantly in one of the two length scales and no density of diffusion anomaly is observed. The structural anomalous region is present for all the cases.  相似文献   

6.
We report a detailed simulation study of the phase behavior of core-softened system with attractive well. Different repulsive shoulder widths and attractive well depths are considered which allows to monitor the influence of repulsive and attractive forces on the phase diagram of the system. Thermodynamic anomalies in the systems are also studied. It is shown that the diffusion anomaly is stabilized by small attraction.  相似文献   

7.
The excess entropy, defined as the difference between the entropies of the liquid and the ideal gas under identical density and temperature conditions, is studied as a function of density and temperature for liquid silica and a two-scale ramp potential, both of which are known to possess waterlike liquid state anomalies. The excess entropy for both systems is evaluated using a fairly accurate pair correlation approximation. The connection between the excess entropy and the density and diffusional anomalies is demonstrated. Using the pair correlation approximation to the excess entropy, it can be shown that if the energetically favorable local geometries in the low and high density limits have different symmetries, then a structurally anomalous regime can be defined in terms of orientational and translational order parameters, as in the case of silica and the two-scale ramp system but not for the one-scale ramp liquid. Within the category of liquids with waterlike anomalies, we show that the relationship between the macroscopic entropy and internal energy is sufficient to distinguish between those with local anisotropy and consequent open packings at low densities and those with isotropic interactions but multiple length scales. Since it is straightforward to evaluate the pair correlation entropy and internal energy from simulations or experimental data, such plots should provide a convenient means to diagnose the existence as well as type of anomalous behavior in a range of liquids, including ionic and intermetallic melts and complex fluids with ultrasoft repulsions.  相似文献   

8.
Using molecular dynamics simulations we investigate the structure of a system of particles interacting through a continuous core-softened interparticle potential. We found for the translational order parameter t a local maximum at a density rho(t-max) and a local minimum at rho(t-min)>rho(t-max). Between rho(t-max) and rho(t-min), the t parameter anomalously decreases upon increasing pressure. For the orientational order parameter Q(6) a maximum was observed at a density rho(t-max)相似文献   

9.
The relationship between structural order metrics and the excess entropy is studied using the transferable rigid ion model (TRIM) of beryllium fluoride melt, which is known to display waterlike thermodynamic anomalies. The order map for liquid BeF2, plotted between translational and tetrahedral order metrics, shows a structurally anomalous regime, similar to that seen in water and silica melt, corresponding to a band of state points for which average tetrahedral (q(tet)) and translational (tau) order are strongly correlated. The tetrahedral order parameter distributions further substantiate the analogous structural properties of BeF2, SiO2, and H2O. A region of excess entropy anomaly can be defined within which the pair correlation contribution to the excess entropy (S2) shows an anomalous rise with isothermal compression. Within this region of anomalous entropy behavior, q(tet) and S2 display a strong negative correlation, indicating the connection between the thermodynamic and the structural anomalies. The existence of this region of excess entropy anomaly must play an important role in determining the existence of diffusional and mobility anomalies, given the excess entropy scaling of transport properties observed in many liquids.  相似文献   

10.
We study the effect of confinement in the dynamical behavior of a core-softened fluid. The fluid is modeled as a two length scales potential. This potential in the bulk reproduces the anomalous behavior observed in the density and in the diffusion of liquid water. A series of NpT molecular dynamics simulations for this two length scales fluid confined in a nanotube were performed. We obtain that the diffusion coefficient increases with the increase of the nanotube radius for wide channels as expected for normal fluids. However, for narrow channels, the confinement shows an enhancement in the diffusion coefficient when the nanotube radius decreases. This behavior, observed for water, is explained in the framework of the two length scales potential.  相似文献   

11.
Hua Jiang 《Tetrahedron》2004,60(44):10029-10038
Oligoamides of 2,6-diaminopyridine and 2,6-pyridinedicarboxylic acid were previously shown to fold into single helical monomers and to hybridize into double helical dimers. A new series of these oligomers comprising 5 to 15 pyridine units, 4-decyloxy residues, and benzylcarbamate end groups were synthesized using a new convergent scheme that involves an early disymmetrization of the diamine and of the diacid. The hybridization of these compounds into double helices was studied by 1H NMR spectroscopy in chloroform solutions at various temperatures. Somewhat unexpectedly, these studies revealed that dimerization increases with oligomer length up to a certain point, and then decreases down to undetectable levels for the longest strands. NMR studies show that both double helices and single helices become more stable when strand length increases. The measured values of enthalpy and entropy of hybridization for oligomers of various length show that the enthalpic gain constantly decreases with strand length. This can be interpreted as being the result of an increasing enthalpic price of the spring-like extension that the strand undergoes upon hybridization as its length increases. On the other hand, the entropic loss of hybridization also constantly decreases with strand length. Presumably, the helical preorganization of the monomers increases with strand length, which allows the longer strands to hybridize with a minimal loss of motional freedom, that is to say at a low entropic price. The competiton between these two factors results in a maximum of hybridization for the strands having an intermediate length.  相似文献   

12.
The relationships between diffusivity and the excess, pair and residual multiparticle contributions to the entropy are examined for Lennard-Jones liquids and binary glassformers, in the context of approximate inverse power law mappings of simple liquids. In the dense liquid where diffusivities are controlled by collisions and cage relaxations, Rosenfeld-type excess entropy scaling of diffusivities is found to hold for both crystallizing as well as vitrifying liquids. The crucial differences between the two categories of liquids emerge only when local cooperative effects in the dynamics result in significant caging effects in the time-dependent behaviour of the single-particle mean square displacement. In the case of glassformers, onset of such local cooperativity coincides with onset of deviations from Rosenfeld-type excess entropy scaling of diffusivities and increasing spatiotemporal heterogeneity. In contrast, for two- and three-dimensional liquids with a propensity to crystallise, the onset of local cooperative dynamics is sufficient to trigger crystallization provided that the liquid is sufficiently supercooled that the free energy barrier to nucleation of the solid phase is negligible. The state points corresponding to onset of transient caging effects can be associated with typical values, within reasonable bounds, of the excess, pair, and residual multiparticle entropy as a consequence of the isomorph-invariant character of the excess entropy, diffusivity and related static and dynamic correlation functions.  相似文献   

13.
By comparison of neopentane pair potentials of mean force (PMFs) in room temperature water and 6.9 molar aqueous urea, it was recently shown that urea molecules affect the PMF minima in an unexpected way (Lee, M.-E.; van der Vegt, N. F. A. J. Am. Chem. Soc. 2006, 128, 4948). While the first PMF minimum in urea solution has an identical shape and depth to those of the corresponding minimum in water, the second minimum in urea solution is broader, deeper, and shifted out to a slightly larger distance. Here, we present a study of the enthalpic and entropic contributions to these PMFs. Its significance for understanding the driving forces responsible for thermodynamically favorable neopentane contact and solvent-separated distances in urea solution is discussed. We propose that the solute-solvent entropy and solute-solvent enthalpy changes should be analyzed for obtaining an unambiguous molecular-scale picture. In urea solution, enthalpy-entropy compensation effects associated with structural solvent reorganization processes are large, causing changes of the system's enthalpy and entropy with hydrophobic pair separation to be very different from the solute-solvent enthalpy and entropy changes. The entropies are discussed in terms of the molecular-scale solvent reorganization processes.  相似文献   

14.
The present study applies the power spectral analysis technique to understand the diffusional anomaly in liquid silica, modeled using the Beest-Kramer-van Santen (BKS) potential. Molecular-dynamics simulations have been carried out to show that power spectrum of tagged particle potential energy of silica shows a regime with 1f(alpha) dependence on frequency f which is the characteristic signature of multiple time scale behaviour in networks. As demonstrated earlier in the case of water [J. Chem. Phys. 122, 104507 (2005)], the variations in the mobility associated with the diffusional anomaly are mirrored in the scaling exponent alpha associated with this multiple time scale behavior. Our results indicate that in the anomalous regime, as the local tetrahedral order decreases with temperature or pressure, the coupling of local modes to network reorganizations increases and so does the diffusivity. This symmetry-dependence of the vibrational couplings is responsible for the connection between the structural and diffusional anomalies.  相似文献   

15.
Thermodynamic properties of liquid beryllium difluoride (BeF(2)) are studied using canonical ensemble molecular dynamics simulations of the transferable rigid ion model potential. The negative slope of the locus of points of maximum density in the temperature-pressure plane is mapped out. The excess entropy, computed within the pair correlation approximation, is found to show an anomalous increase with isothermal compression at low temperatures which will lead to diffusional as well as structural anomalies resembling those in water. The anomalous behavior of the entropy is largely connected with the behavior of the Be-F pair correlation function. The internal energy shows a T(35) temperature dependence. The pair correlation entropy shows a T(-25) temperature dependence only at high densities and temperatures. The correlation plots between internal energy and the pair correlation entropy for isothermal compression show the characteristic features expected of network-forming liquids with waterlike anomalies. The tagged particle potential energy distributions are shown to have a multimodal form at low temperatures and densities similar to those seen in other liquids with three-dimensional tetrahedral networks, such as water and silica.  相似文献   

16.
The thermodynamic and structural behaviors of confined discrete-potential fluids are analyzed by computer simulations, studying in a systematic way the effects observed by varying the density, temperature, and parameters of the potentials that characterize the molecule-molecule interactions. The Gibbs ensemble simulation technique for confined fluids [A. Z. Panagiotopoulos, Mol. Phys. 62, 701 (1987)] is applied to a fluid confined between two parallel hard walls. Two different systems have been considered, both formed by spherical particles that differ by the interparticle pair potential: a square well plus square shoulder or a square shoulder plus square well interaction. These model interactions can describe in an effective way pair potentials of real molecular and colloidal systems. Results are compared with the simpler reference systems of square-shoulder and square-well fluids, both under confinement. From the adsorption characterization through the use of density profiles, it is possible to obtain specific values of the interparticle potential parameters that result in a positive to negative adsorption transition.  相似文献   

17.
In the field of chemistry, model compounds find extensive use for investigating complex objects. One prime example of such object is the protein-ligand supramolecular interaction. Prediction the enthalpic and entropic contribution to the free energy associated with this process, as well as the structural and dynamic characteristics of protein-ligand complexes poses considerable challenges. This review exemplifies modeling approaches used to study protein-ligand binding (PLB) thermodynamics by employing pairs of conformationally constrained/flexible model molecules. Strategically designing the model molecules can reduce the number of variables that influence thermodynamic parameters. This enables scientists to gain deeper insights into the enthalpy and entropy of PLB, which is relevant for medicinal chemistry and drug design. The model studies reviewed here demonstrate that rigidifying ligands may induce compensating changes in the enthalpy and entropy of binding. Some “rules of thumb” have started to emerge on how to minimize entropy-enthalpy compensation and design efficient rigidified or flexible ligands.  相似文献   

18.
We investigate theoretically the binary fluid-phase behavior of mixtures in which one water-like component can have two critical points. We consider three equal-sized nonpolar solutes that differ in the strength of their dispersive interactions (a1 < a2 < a3, where a denotes the van der Waals attractive parameter). In each case, we compare the phase behavior predicted using two sets of parameters for water: one giving rise to a pure component low-temperature liquid-liquid transition terminating at a critical point (two-critical-point parameter set), and one in which no such second critical point exists (singularity-free parameter set). Regardless of the parameter values used, we find five mixture critical lines. Using the two-critical-point parameter set, we find that a critical line originates at water's second critical point for aqueous mixtures involving solutes 1, 2, or 3. For mixtures involving solutes 1 or 2, this line extends towards low pressures and high temperatures as the solute mole fraction increases, and is closely related to the critical line originating at water's ordinary vapor-liquid critical point: these two critical lines are loci of upper and lower consolute points corresponding to the same liquid-liquid transition. In mixtures involving solute 2, the critical locus emanating from water's second critical point is shifted to higher temperatures compared to mixtures involving solute 1, and extends up to T approximately 310 K at moderate pressures (ca. 200 bars). This suggests the possibility of an experimentally accessible manifestation of the existence of a second critical point in water. For binary mixtures involving solutes 1 or 2, changing the water parameters from the two critical points to the singularity-free case causes the disappearance of a lower consolute point at moderate pressures. For binary mixtures involving solute 3, the differences between two-critical-point and singularity-free behaviors occur only in the experimentally difficult-to-probe low-temperature and high-pressure region.  相似文献   

19.
The connection between thermodynamic, transport, and potential-energy landscape features is studied for liquids with Lennard-Jones-type pair interactions using both microcanonical molecular-dynamics and isothermal-isobaric ensemble Monte Carlo simulations. Instantaneous normal-mode and saddle-point analyses of two variants of the monatomic Lennard-Jones liquid have been performed. The diffusivity is shown to depend linearly on several key properties of instantaneous and saddle configurations-the energy, the fraction of negative curvature directions, and the mean, maximum, and minimum eigenvalues of the Hessian. Since the Dzugutov scaling relationship also holds for such systems [Nature (London) 381, 137 (1996)], the exponential of the excess entropy, within the two-particle approximation, displays the same linear dependence on energy landscape properties as the diffusivity.  相似文献   

20.
We apply the recently developed adaptive ensemble optimization technique to simulate dense Lennard-Jones fluids and a particle-solvent model by broad-histogram Monte Carlo techniques. Equilibration of the simulated fluid is improved by sampling an optimized histogram in radial coordinates that shifts statistical weight towards the entropic barriers between the shells of the liquid. Interstitial states in the vicinity of these barriers are identified with unprecedented accuracy by sharp signatures in the quickly converging histogram and measurements of the local diffusivity. The radial distribution function and potential of mean force are calculated to high precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号