首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The dissociation of the hydroxymethyl radical, CH(2)OH, and its isotopolog, CD(2)OH, following the excitation of high OH stretch overtones is studied by quasi-classical molecular dynamics calculations using a global potential energy surface (PES) fitted to ab initio calculations. The PES includes CH(2)OH and CH(3)O minima, dissociation products, and all relevant barriers. Its analysis shows that the transition states for OH bond fission and isomerization are both very close in energy to the excited vibrational levels reached in recent experiments and involve significant geometry changes relative to the CH(2)OH equilibrium structure. The energies of key stationary points are refined using high-level electronic structure calculations. Vibrational energies and wavefunctions are computed by coupled anharmonic vibrational calculations. They show that high OH-stretch overtones are mixed with other modes. Consequently, trajectory calculations carried out at energies about ~3000 cm(-1) above the barriers reveal that despite initial excitation of the OH stretch, the direct OH bond fission is relatively slow (10 ps) and a considerable fraction of the radicals undergoes isomerization to the methoxy radical. The computed dissociation energies are: D(0)(CH(2)OH → CH(2)O + H) = 10,188 cm(-1), D(0)(CD(2)OH → CD(2)O + H) = 10,167 cm(-1), D(0)(CD(2)OH → CHDO + D) = 10,787 cm(-1). All are in excellent agreement with the experimental results. For CH(2)OH, the barriers for the direct OH bond fission and isomerization are: 14,205 and 13,839 cm(-1), respectively.  相似文献   

2.
We report our theoretical findings regarding internal vibrations of the Li(NH 3) 4 (+) complex which have been studied using three different methods, namely, a classical spring network model, density functional theory, and ab initio Hartree-Fock plus M?ller-Plesset correlation energy correction truncated at second-order. The equilibrium Li...N and N...N distances are found to be 2.12 and 3.47 A, respectively, in good agreement with the experimental data. The theoretically determined vibrational frequencies of the lowest modes are in good agreement with those extracted from inelastic X-ray scattering measurements. From group theory considerations, the internal vibrations of Li(NH 3) 4 (+) complexes resemble those of a tetrahedral object. Further experimental investigation is suggested.  相似文献   

3.
A potential energy surface (PES) is developed for C60 designed to describe vibrational motions valid in the anharmonic limit. The PES is based on a previously existing one that is fit to the harmonic fundamentals and is then modified to generate anharmonicity of all orders and in all terms, but without additional fitted parameters. The resulting Cartesian vibrational motions are decomposed into normal modes, and the anharmonic expansion coefficients are calculated including 2-mode couplings and up to 4th order. The resulting PES is used in a vibrational self-consistent field (VSCF) algorithm to calculate the anharmonically corrected fundamental frequencies. The parameters are then fit to fundamental infrared and Raman frequencies. While it is not possible to assign combination and overtone transitions with sufficient experimental accuracy, conclusions about the effects of anharmonic vibrational coupling in C60 are described.  相似文献   

4.
Theoretical studies of the potential energy surface and bound states were performed for the N(2)O dimer. A four-dimensional intermolecular potential energy surface (PES) was constructed at the CCSD(T) level with aug-cc-pVTZ basis set supplemented with bond functions. Three co-planar local minima were found on this surface. They correspond to a nonpolar isomer with slipped-antiparallel planar structure and two equivalent polar isomers with slipped-parallel planar structures. The nonpolar isomer is energetically more stable than the polar ones by 162 cm(-1). To assign the fundamental vibrational frequencies for both isomers, more than 150 vibrational bound states were calculated based on this PES. The orientation of the nodal surface of the wave functions plays an important role in the assignment of disrotation and conrotation vibrational modes. The calculated vibrational frequencies are in good agreement with the available experimental data. We have also found a quantum tunneling effect between the two equivalent polar structures in the higher vibrational excited states. Rotational transition frequencies of the polar structure were also calculated. The accuracy of the PES is validated by the good agreement between theoretical and experimental results for the transition frequencies and spectroscopic parameters.  相似文献   

5.
The infrared spectrum of the Al(+)-H(2) complex is recorded in the H-H stretch region (4075-4110 cm(-1)) by monitoring Al(+) photofragments. The H-H stretch band is centered at 4095.2 cm(-1), a shift of -66.0 cm(-1) from the Q(1)(0) transition of the free H(2) molecule. Altogether, 47 rovibrational transitions belonging to the parallel K(a)=0-0 and 1-1 subbands were identified and fitted using a Watson A-reduced Hamiltonian, yielding effective spectroscopic constants. The results suggest that Al(+)-H(2) has a T-shaped equilibrium configuration with the Al(+) ion attached to a slightly perturbed H(2) molecule, but that large-amplitude intermolecular vibrational motions significantly influence the rotational constants derived from an asymmetric rotor analysis. The vibrationally averaged intermolecular separation in the ground vibrational state is estimated as 3.03 A, decreasing by 0.03 A when the H(2) subunit is vibrationally excited. A three-dimensional potential energy surface for Al(+)-H(2) is calculated ab initio using the coupled cluster CCSD(T) method and employed for variational calculations of the rovibrational energy levels and wave functions. Effective dissociation energies for Al(+)-H(2)(para) and Al(+)-H(2)(ortho) are predicted, respectively, to be 469.4 and 506.4 cm(-1), in good agreement with previous measurements. The calculations reproduce the experimental H-H stretch frequency to within 3.75 cm(-1), and the calculated B and C rotational constants to within approximately 2%. Agreement between experiment and theory supports both the accuracy of the ab initio potential energy surface and the interpretation of the measured spectrum.  相似文献   

6.
A noteworthy example of a molecule with coupled large-amplitude motions is provided by acetylacetone (methyl group torsions and intramolecular hydrogen bonds). The molecule was trapped in solid parahydrogen to investigate the complex proton tunneling processes. Nuclear spin conversion in methyl groups is observed and, combined with IR spectra, documents the coupling between high frequency modes and large amplitude motions.  相似文献   

7.
A global potential energy surface (PES) for the electronic ground state of the BrH(2) system was constructed based on the multireference configuration interaction (MRCI) method including the Davidson's correction using a large basis set. In addition, the spin-orbit correction were computed using the Breit-Pauli Hamiltonian and the unperturbed MRCI wavefunctions in the Br + H(2) channel and the transition state region. Adding the correction to the ground state potential, the lowest spin-orbit correlated adiabatic potential was obtained. The characters of the new potential are discussed. Accurate initial state specified rate constants for the H + HBr → H(2) + Br abstraction reaction were calculated using a time-dependent wave packet method. The predicted rate constants were found to be in excellent agreement with the available experimental values and much better than those obtained from a previous PES.  相似文献   

8.
The electronic and molecular structure of N,N,N',N'-tetraphenylphenylenediamine radical cation 1(+) is in focus of this study. Resonance Raman experiments showed that at least eight vibrational modes are strongly coupled to the optical charge resonance band which is seen in the NIR. With the help of a DFT-based vibrational analysis, these eight modes were assigned to symmetric vibrations. The contribution of these symmetric modes to the total vibrational reorganization energy is dominant. These findings are in agreement with the conclusions from a simple two-state two-mode Marcus-Hush analysis which yields a tiny electron-transfer barrier. The excellent agreement of the X-ray crystal structure analysis and the DFT computed molecular structure of 1(+) on one hand as well as the solvent and solid-state IR spectra and the DFT-calculated IR active vibrations on the other hand prove 1(+) adopts a symmetrical delocalized Robin-Day class III structure both in the solid state and in solution.  相似文献   

9.
The intermolecular potential energy surface (PES) of Ar interacting with the acetylene cation in its (2)Pi(u) ground electronic state is characterized by infrared photodissociation (IRPD) spectroscopy and quantum chemical calculations. In agreement with the theoretical predictions, the rovibrational analysis of the IRPD spectrum of C(2)H(2) (+)-Ar recorded in the vicinity of the antisymmetric CH stretching fundamental (nu(3)) is consistent with a vibrationally averaged T-shaped structure and a ground-state center-of-mass separation of R(c.m.) = 2.86 +/- 0.09 A. The nu(3) band experiences a blueshift of 16.7 cm(-1) upon complexation, indicating that vibrational excitation slightly reduces the interaction strength. The two-dimensional intermolecular PES of C(2)H(2) (+)-Ar, obtained from coupled cluster calculations with a large basis set, features strong angular-radial coupling and supports in addition to a global pi-bound minimum also two shallow side wells with linear H-bound geometries. Bound state rovibrational energy level calculations are carried out for rotational angular momentum J = 0-10 (both parities) employing a discrete variable representation-distributed Gaussian basis method. Effective spectroscopic constants are determined for the vibrational ground state by fitting the calculated rotational energies to the standard Watson A-type Hamiltonian for a slightly asymmetric prolate top.  相似文献   

10.
The potential energy surface of symmetric stretching and out-of-plane bending motions for the methyl radical has been calculated from UHF SCEP wavefunctions. Anharmonic vibrational frequencies are computed by a variational method and transition dipole moments and Einstein coefficients of spontaneous emission are reported. Isotropic hyperfine coupling constants are obtained in agreement with experiment to within 4% when calculated by differentiation of the perturbed CEPA-1 energy and taking vibrational averaging into account. Also, the temperature dependence of the proton hyperfine coupling constant compares well with experimental results. The vibrational fine structure of the first band of the photoelectron spectra of CH3 and CD3 is calculated in good agreement with experiment.  相似文献   

11.
Geometries, anharmonic vibrations, and torsion-wagging (TW) multiplets of hydrazine and its deuterated species are studied using high-level ab initio methods employing the second-order Mo?ller-Plesset perturbation theory (MP2) as well as the coupled cluster singles and doubles model including connected triple corrections, CCSD(T), in conjunction with extended basis sets containing diffuse and core functions. To describe the splitting patterns caused by tunneling in TW states, the 3D potential energy surface (PES) for the large-amplitude TW modes is constructed. Stationary points in the 3D PES, including equivalent local minima and saddle points are characterized. Using this 3D PES, a flexible Hamiltonian is built numerically and then employed to solve the vibrational problem for TW coupled motion. The calculated ground state r(av) structure is expected to be more reliable than the experimental one that has been determined using a simplified structural model. The calculated fundamental frequencies allowed resolution of the assignment problems discussed earlier in the literature. The determined energy barriers, including the contributions from the small-amplitude vibrations, to the tunneling of the symmetric and antisymmetric wagging mode of 1997 cm(-1) and 3454 cm(-1), respectively, are in reasonable agreement with the empirical estimates of 2072 cm(-1) and 3312 cm(-1), respectively [W. ?odyga et al. J. Mol. Spectrosc. 183, 374 (1997)]. However, the empirical torsion barrier of 934 cm(-1) appears to be overestimated. The ab initio calculations yield two torsion barriers: cis and trans of 744 cm(-1) and 2706 cm(-1), respectively. The multiplets of the excited torsion states are predicted from the refined 3D PES.  相似文献   

12.
The excitation spectra and molecular dynamics of furan associated with its low-lying excited singlet states 1A2(3s), 1B2(V), 1A1(V'), and 1B1(3p) are investigated using an ab initio quantum-dynamical approach. The ab initio results of our previous work [J. Chem. Phys. 119, 737 (2003)] on the potential energy surfaces (PES) of these states indicate that they are vibronically coupled with each other and subject to conical intersections. This should give rise to complex nonadiabatic nuclear dynamics. In the present work the dynamical problem is treated using adequate vibronic coupling models accounting for up to four coupled PES and thirteen vibrational degrees of freedom. The calculations were performed using the multiconfiguration time-dependent Hartree method for wave-packet propagation. It is found that in the low-energy region the nuclear dynamics of furan is governed mainly by vibronic coupling of the 1A2(3s) and 1B2(V) states, involving also the 1A1(V') state. These interactions are responsible for the ultrafast internal conversion from the 1B2(V) state, characterized by a transfer of the electronic population to the 1A2(3s) state on a time scale of approximately 25 fs. The calculated photoabsorption spectrum of furan is in good qualitative agreement with experimental data. Some assignments of the measured spectrum are proposed.  相似文献   

13.
The concept of a Born–Oppenheimer (BO) potential energy surface (PES) has been extended to non-adiabatic wavefunctions by Hunter and by Wilson. A Hunter non-adiabatic PES corresponding to an excited vibrational state has a set of spikes superimposed on a BO-like PES. It was believed that Wilson PESs were spike-free. We show that it is not the case and that the Wilson PES value at a given nuclear configuration is not the expectation value of a quantum observable but a quotient of such expectation values. Consequently, BO PESs have the quantum interpretation of quotients of approximate expectation values of observables.  相似文献   

14.
Two three-dimensional potential energy surfaces (PESs) are reported for the cationic complex He-HF+; they are degenerate for linear geometries of the complex and correlate with the doubly degenerate X2Pi ground state of the HF+monomer. The PESs are computed from the interaction energies of the neutral dimer and the ionization potentials of the He-HF complex and the HF molecule. Ionization potentials are obtained from the outer valence Green's function (OVGF) method, while the energies of the neutral species are computed by means of the single and double coupled-cluster method with perturbative triples [CCSD(T)]. For comparison, interaction energies of the ionic complex were computed also by the use of the partially spin-restricted variant of the CCSD(T) method. After asymptotic scaling of the OVGF results, good agreement is found between the two methods. A single global minimum is found in the PES, for the linear He-HF+ geometry. The well depth and equilibrium separation are 2.240 A and 1631.3 cm(-1), respectively, at an HF+ bond length r=1.0012 A, in rather good agreement with results of Schmelz and Rosmus [Chem. Phys. Lett. 220, 117 (1994)]. The well depth depends much more strongly on the internuclear H-F separation than in the neutral He-HF complex and the global minimum in a full three-dimensional PES occurs at r=1.0273 A.  相似文献   

15.
16.
State-resolved differential cross section, integral cross section, average vibrational energy transfer, and the relative transition probability are computed for the H(+)+NO system using our newly obtained ab initio potential energy surfaces (PES) at the multireference configuration interaction level of accuracy employing the correlation consistent polarized valence triple zeta basis set. The quantum dynamics is treated within the vibrational close-coupling rotational infinite-order sudden approximation using the coupled ground state and first excited state ab initio quasidiabatic PES. The computed collision attributes for the inelastic vibrational excitation are compared with the state-to-state scattering data available at E(c.m.)=9.5 eV and E(c.m.)=29.03 eV and are found to be in overall good agreement with those of the experiments. The results for the vibrational charge transfer processes at these collision energies are also presented.  相似文献   

17.
Interpreting high-resolution rovibrational spectra of weakly bound complexes commonly requires spectroscopic accuracy (<1 cm-1) potential energy surfaces (PES). Constructing high-accuracy ab initio PES relies on the high-level electronic structure approaches and the accurate physical models to represent the potentials. The coupled cluster approaches including single and double excitations with a perturbational estimate of triple excitations (CCSD(T)) have been termed the "gold standard" of electronic structure theory, and widely used in generating intermolecular interaction energies for most van der Waals complexes. However, for HCN-He complex, the observed millimeter-wave spectroscopy with high-excited resonance states has not been assigned and interpreted even on the ab initio PES computed at CCSD(T) level of theory with the complete basis set (CBS) limit. In this work, an effective three-dimensional ab initio PES for HCN-He, which explicitly incorporates dependence on the Q1 (C-H) normal-mode coordinate of the HCN monomer has been calculated at the CCSD(T)/CBS level. The post-CCSD(T) interaction energy has been examined and included in our PES. Analytic two-dimensional PESs are obtained by least-squares fitting vibrationally averaged interaction energies for v1(C-H)=0, and 1 to the Morse/Long-Range potential function form with root-mean-square deviations (RMSD) smaller than 0.011 cm-1. The role and significance of the post-CCSD(T) interaction energy contribution are clearly illustrated by comparison with the predicted rovibrational energy levels. With or without post-CCSD(T) corrections, the value of dissociation limit (D0) is 8.919 or 9.403 cm-1, respectively. The predicted millimeter-wave transitions and intensities from the PES with post-CCSD(T) excitation corrections are in good agreement with the available experimental data with RMS discrepancy of 0.072 cm-1. Moreover, the infrared spectrum for HCN-He complex is predicted for the first time. These results will serve as a good starting point and provide reliable guidance for future infrared studies of HCN doped in (He)n clusters.  相似文献   

18.
A quasiclassical method which enables evaluation of complex autocorrelation function from classical trajectory calculations is proposed. The method is applied for two highly excited nonlinearly coupled harmonic oscillators in regimes prevailed either by regular or chaotic classical motions. A good agreement of classical and quantum autocorrelation functions is found within short (Ehrnfest) time limit. Fourier transforms of the autocorrelation functions provide moderate resolved energy spectra, where classical and quantum results nearly coincide. The actual energy levels are obtained from approximate short-time autocorrelation functions with the help of filter diagonalization. This study is a follow up to our previous work [P. Zdanska and N. Moiseyev, J. Chem. Phys. 115, 10608 (2001)], where the complex autocorrelation has been obtained up to overall phase factors of recurrences.  相似文献   

19.
Many areas of astronomy and astrophysics require an accurate high temperature spectrum of methane (CH4). The goal of the present research is to determine an accurate ab initio potential energy surface (PES) for CH4. As a first step towards this goal, we have determined a PES including up to octic terms. We compare our results with experiment and to a PES based on a quartic expansion. Our octic PES gives good agreement with experiment for all levels, while the quartic PES only for the lower levels.  相似文献   

20.
Full-dimensional ab initio potential energy surface (PES) and dipole moment surface (DMS) are reported for H(5)O(2) (+). Tens of thousands of coupled-cluster [CCSD(T)] and second-order Moller-Plesset (MP2) calculations of electronic energies, using aug-cc-pVTZ basis, were done. The energies were fit very precisely in terms of all the internuclear distances, using standard least-square procedures, however, with a fitting basis that satisfies permutational symmetry with respect to like atoms. The H(5)O(2) (+) PES is a fit to 48 189 CCSD(T) energies, containing 7962 polynomial coefficients. The PES has a rms fitting error of 34.9 cm(-1) for the entire data set up to 110 000 cm(-1). This surface can describe various internal floppy motions, including the H atom exchanges, monomer inversions, and monomer torsions. First- and higher-order saddle points have been located on the surface and compared with available previous theoretical work. In addition, the PES dissociates correctly (and symmetrically) to H(2)O+H(3)O(+), with D(e)=11 923.8 cm(-1). Geometrical and vibrational properties of the monomer fragments are presented. The corresponding global DMS fit (MP2 based) involves 3844 polynomial coefficients and also dissociates correctly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号