首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structure determination of covalent organic frameworks (COFs) with atomic precision is a bottleneck that hinders the development of COF chemistry. Although three-dimensional electron diffraction (3D-ED) data has been used to solve structures of sub-micrometer-sized COFs, successful structure solution is not guaranteed as the data resolution is usually low. We demonstrate that the direct-space strategy for structure solution, implemented using a genetic algorithm (GA), is a successful approach for structure determination of COF-300 from 3D-ED data. Structural models with different geometric constraints were considered in the GA calculations, with successful structure solution achieved from room-temperature 3D-ED data with a resolution as low as ca. 3.78 Å. The generality of this strategy was further verified for different phases of COF-300. This study demonstrates a viable strategy for structure solution of COF materials from 3D-ED data of limited resolution, which may facilitate the discovery of new COF materials in the future.  相似文献   

2.
Layered covalent organic frameworks (2D‐COFs), composed of reversible imine linkages and accessible pores, offer versatility for chemical modifications towards the development of catalytic materials. Nitrogen‐enriched COFs are good candidates for binding Pd species. Understanding the local structure of reacting Pd sites bonded to the COF pores is key to rationalize interactions between active sites and porous surfaces. By combining advanced synchrotron characterization methods with periodic computational DFT modeling, the precise atomic structure of catalytic Pd sites attached to local defects is resolved within an archetypical imine‐linked 2D‐COF. This material was synthesized using an in situ method as a gel, under which imine hydrolysis and metalation reactions are coupled. Local defects formed in situ within imine‐linked 2D‐COF materials are highly reactive towards Pd metalation, resulting in active materials for Suzuki–Miyaura cross‐coupling reactions.  相似文献   

3.
Condensation of 2,5-diethoxyterephthalohydrazide with 1,3,5-triformylbenzene or 1,3,5-tris(4-formylphenyl)benzene yields two new covalent organic frameworks, COF-42 and COF-43, in which the organic building units are linked through hydrazone bonds to form extended two-dimensional porous frameworks. Both materials are highly crystalline, display excellent chemical and thermal stability, and are permanently porous. These new COFs expand the scope of possibilities for this emerging class of porous materials.  相似文献   

4.
Covalent organic frameworks as exceptional hydrogen storage materials   总被引:3,自引:0,他引:3  
We report the H2 uptake properties of six covalent organic frameworks (COFs) from first-principles-based grand canonical Monte-Carlo simulations. The predicted H2 adsorption isotherm is in excellent agreement with the only available experimental result (3.3 vs 3.4 wt % at 50 bar and 77 K for COF-5), also reported here, validating the predictions. We predict that COF-105 and COF-108 lead to a reversible excess H2 uptake of 10.0 wt % at 77 K, making them the best known storage materials for molecular hydrogen at 77 K. We predict that the total H2 uptake for COF-108 is 18.9 wt % at 77 K. COF-102 shows the best volumetric performance, storing 40.4 g/L of H2 at 77 K. These results indicate that the COF systems are most promising candidates for practical hydrogen storage.  相似文献   

5.
Two-dimensional layered covalent organic frameworks (2D COFs) organize π-electron systems into ordered structures ideal for exciton and charge transport and exhibit permanent porosity available for subsequent functionalization. A 2D COF with the largest pores reported to date was synthesized by condensing 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and 4,4'-diphenylbutadiynebis(boronic acid) (DPB). The COF was prepared as both a high surface area microcrystalline powder as well as a vertically oriented thin film on a transparent single-layer graphene/fused silica substrate. Complementary molecular dynamics and density functional theory calculations provide insight into the interlayer spacing of the COF and suggest that adjacent layers are horizontally offset by 1.7-1.8 ?, in contrast to the eclipsed AA stacking typically proposed for these materials.  相似文献   

6.
Mechanistic understanding into the formation and growth of imine-linked two-dimensional (2D) covalent organic frameworks (COFs) is needed to improve their materials quality and access larger crystallite sizes, both of which limit the promise of 2D COFs and 2D polymerization techniques. Here we report a previously unknown temperature-dependent depolymerization of colloidal 2D imine-linked COFs, which offers a new means to improve their crystallinity. 2D COF colloids form at room temperature but then depolymerize when their reaction mixtures are heated to 90 °C. As the solutions are cooled back to room temperature, the 2D COFs repolymerize and crystallize with improved crystallinity and porosity, as characterized by X-ray diffraction, infrared spectroscopy and N2 porosimetry. The evolution of COF crystallinity during the solvothermal depolymerization and repolymerization processes was characterized by in situ wide angle X-ray scattering, and the concentrations of free COF monomers as a function of temperature were quantified by variable temperature 1H NMR spectroscopy. The ability of a 2D COF to depolymerize under these conditions depends on both the identity of the COF and its initial materials quality. For one network formed at room temperature (TAPB-PDA COF), a first depolymerization process is nearly complete, and the repolymerization yields materials with dramatically enhanced crystallinity and surface area. Already recrystallized materials partially depolymerize upon heating their reaction mixtures a second time. A related 2D COF (TAPB-DMTA COF) forms initially with improved crystallinity compared to TAPB-PDA COF and then partially depolymerizes upon heating. These results suggest that both high materials quality and network-dependent properties, such as interlayer interaction strength, influence the extent to which 2D COFs resist depolymerization. These findings offer a new means to recrystallize or solvent anneal 2D COFs and may ultimately inform crystallization conditions for obtaining large-area imine-linked two-dimensional polymers from solution.

Conditions for which imine-linked 2D COF polymerizations are temperature-sensitive are identified that enable a dissolution/repolymerization process akin to molecular recrystallization.  相似文献   

7.
Three‐dimensional covalent organic frameworks (3D COFs) are promising crystalline materials with well‐defined structures, high porosity, and low density; however, the limited choice of building blocks and synthetic difficulties have hampered their development. Herein, we used a flexible and aliphatic macrocycle, namely γ‐cyclodextrin (γ‐CD), as the soft struts for the construction of a polymeric and periodic 3D extended network, with the units joined via tetrakis(spiroborate) tetrahedra with various counterions. The inclusion of pliable moieties in the robust open framework endows these CD‐COFs with dynamic features, leading to a prominent Li ion conductivity of up to 2.7 mS cm−1 at 30 °C and excellent long‐term Li ion stripping/plating stability. Exchanging the counterions within the pores can effectively modulate the interactions between the CD‐COF and CO2 molecules.  相似文献   

8.
Macrocycle-to-framework strategy was explored to prepare covalent organic frameworks (COFs) using shape-persistent macrocycles as multitopic building blocks. We demonstrate well-ordered mesoporous 2D COFs (AEM–COF-1 and AEM–COF-2) can be constructed from tritopic arylene-ethynylene macrocycles, which determine the topology and modulate the porosity of the materials. According to PXRD analysis and computer modelling study, these COFs adopt the fully eclipsed AA stacking mode with large accessible pore sizes of 34 or 39 Å, which are in good agreement with the values calculated by NLDFT modelling of gas adsorption isotherms. The pore size of COFs can be effectively expanded by using larger size of the macrocycles. Provided a plethora of polygonal shape-persistent macrocycles with various size, shape and internal cavity, macrocycle-to-framework strategy opens up a promising approach to expand the structural diversity of COFs and build hierarchical pore structures within the framework.  相似文献   

9.
Two‐dimensional covalent organic frameworks (2D COFs) provide a unique platform for the molecular design of electronic and optoelectronic materials. Here, the synthesis and characterization of an electroactive COF containing the well‐known tetrathiafulvalene (TTF) unit is reported. The TTF‐COF crystallizes into 2D sheets with an eclipsed AA stacking motif, and shows high thermal stability and permanent porosity. The presence of TTF units endows the TTF‐COF with electron‐donating ability, which is characterized by cyclic voltammetry. In addition, the open frameworks of TTF‐COF are amenable to doping with electron acceptors (e.g., iodine), and the conductivity of TTF‐COF bulk samples can be improved by doping. Our results open up a reliable route for the preparation of well‐ordered conjugated TTF polymers, which hold great potential for applications in fields from molecular electronics to energy storage.  相似文献   

10.
Layered covalent organic frameworks (2D-COFs), composed of reversible imine linkages and accessible pores, offer versatility for chemical modifications towards the development of catalytic materials. Nitrogen-enriched COFs are good candidates for binding Pd species. Understanding the local structure of reacting Pd sites bonded to the COF pores is key to rationalize interactions between active sites and porous surfaces. By combining advanced synchrotron characterization methods with periodic computational DFT modeling, the precise atomic structure of catalytic Pd sites attached to local defects is resolved within an archetypical imine-linked 2D-COF. This material was synthesized using an in situ method as a gel, under which imine hydrolysis and metalation reactions are coupled. Local defects formed in situ within imine-linked 2D-COF materials are highly reactive towards Pd metalation, resulting in active materials for Suzuki–Miyaura cross-coupling reactions.  相似文献   

11.
Abstract

Covalent organic frameworks (COFs) show excellent property, such as high porosity and excellent structure stability and were well applied in fields such as catalysis and adsorption, but most of the COFs showed similar structure and thus similar adsorption performance. Modification of simple COFs to enhance its adsorption performance in separation technique is an important issue. In this study, quaternary ammonium groups with long hydrophobic chain were introduced into a simple COF (TpPa-1) for the first time. The positively charged COF (PC-TpPa-1) can form electrostatic interaction and hydrophobic effect with negatively charged analytes, and showed good adsorption performance for ultraviolet-filters (UV filters). Under the optimum conditions, i.e. adsorbent amount 20?mg, pH?=?7, 1.0?mL acetonitrile as eluent, the obtained recoveries for all UV filters were in the range of 86.4–96.7%.The developed method was successfully applied to the determination of UV filters from food packaging material migrants with the aid of HPLC as a detector.  相似文献   

12.
Integrating different kinds of pores into one covalent organic framework (COF) endows it with hierarchical porosity and thus generates a member of a new class of COFs, namely, heteropore COFs. Whereas the construction of COFs with homoporosity has already been well developed, the fabrication of heteropore COFs still faces great challenges. Although two strategies have recently been developed to successfully construct heteropore COFs from noncyclic building blocks, they suffer from the generation of COF isomers, which decreases the predictability and controllability of construction of this type of reticular materials. In this work, this drawback was overcome by a multiple‐linking‐site strategy that offers precision construction of heteropore COFs containing two kinds of hexagonal pores with different shapes and sizes. This strategy was developed by designing a building block in which double linking sites are introduced at each branch of a C3‐symmetric skeleton, the most widely used scaffold to construct COFs with homogeneous porosity. This design provides a general way to precisely construct heteropore COFs without formation of isomers. Furthermore, the as‐prepared heteropore COFs have hollow‐spherical morphology, which has rarely been observed for COFs, and an uncommon staggered AB stacking was observed for the layers of the 2D heteropore COFs.  相似文献   

13.
Covalent organic frameworks (COFs) are crystalline and porous organic materials attractive for photocatalysis applications due to their structural versatility and tunable optical and electronic properties. The use of photocatalysts (PCs) for polymerizations enables the preparation of well-defined polymeric materials under mild reaction conditions. Herein, we report two porphyrin-based donor–acceptor COFs that are effective heterogeneous PCs for photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT). Using density functional theory (DFT) calculations, we designed porphyrin COFs with strong donor–acceptor characteristics and delocalized conduction bands. The COFs were effective PCs for PET-RAFT, successfully polymerizing a variety of monomers in both organic and aqueous media using visible light (λmax from 460 to 635 nm) to produce polymers with tunable molecular weights (MWs), low molecular weight dispersity, and good chain-end fidelity. The heterogeneous COF PCs could also be reused for PET-RAFT polymerization at least 5 times without losing photocatalytic performance. This work demonstrates porphyrin-based COFs that are effective catalysts for photo-RDRP and establishes design principles for the development of highly active COF PCs for a variety of applications.

Porphyrin-based donor–acceptor COFs are effective heterogeneous photocatalysts for photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT), including for aqueous polymerizations and under red-light excitation.  相似文献   

14.
Sensitive and efficient detection of hydrazine is of great significance because hydrazine is a highly toxic organic molecule, which can pose great threats to human health. Herein, two covalent organic frameworks (COFs) modified with ester groups in the pores, TAPB-DHE and TAPT-DHE, have been successfully synthesized via esterification reaction. Both of the two COFs have good crystallinity, thermal stability, and fluorescence properties. TAPB-DHE can be used as a turn-on fluorescence sensor for the sensitive detection of trace hydrazine in aqueous solution with a detection limit of 0.40 μM and a wide linear range of 0–100 μM due to the fluorescence enhancement of TAPB-DHE caused by the chemical reaction between hydrazine and TAPB-DHE, in which the ester group of the COF is converted into hydroxyl group, leading to the restriction of the intramolecular charge transfer (ICT) effect. This work provides a reference for the design of COFs with hydrazine recognition function and a helpful expansion for the practical application of COFs.  相似文献   

15.
Covalent organic frameworks (COFs) offer vast structural and chemical diversity enabling a wide and growing range of applications. While COFs are well-established as heterogeneous catalysts, so far, their high and ordered porosity has scarcely been utilized to its full potential when it comes to spatially confined reactions in COF pores to alter the outcome of reactions. Here, we present a highly porous and crystalline, large-pore COF as catalytic support in α,ω-diene ring-closing metathesis reactions, leading to increased macrocyclization selectivity. COF pore-wall modification by immobilization of a Grubbs-Hoveyda-type catalyst via a mild silylation reaction provides a molecularly precise heterogeneous olefin metathesis catalyst. An increased macro(mono)cyclization (MMC) selectivity over oligomerization (O) for the heterogeneous COF-catalyst (MMC:O=1.35) of up to 51 % compared to the homogeneous catalyst (MMC:O=0.90) was observed along with a substrate-size dependency in selectivity, pointing to diffusion limitations induced by the pore confinement.  相似文献   

16.
Gold clusters loaded on various supports have been widely used in the fields of energy and biology. However, the poor photostability of Au clusters on support interfaces under prolonged illumination usually results in loss of catalytic performance. Covalent organic frameworks (COFs) with periodic and ultrasmall pore structures are ideal supports for dispersing and stabilizing Au clusters, although it is difficult to encapsulate Au clusters in the ultrasmall pores. In this study, a two‐dimensional (2D) COF modified with thiol chains in its pores was prepared. With ?SH groups as nucleation sites, Au nanoclusters (NCs) could grow in situ within the COF. The ultrasmall pores of the COF and the strong S?Au binding energy combine to improve the dispersibility of Au NCs under prolonged light illumination. Interestingly, Au–S–COF bridging as observed in this artificial Z‐scheme photocatalytic system is deemed to be an ideal means to increase charge‐separation efficiency.  相似文献   

17.
Covalent organic frameworks (COFs) have received broad interest owing to their permanent porosity, high stability, and tunable functionalities. COFs with long-range π-conjugation and photosensitizing building blocks have been explored for sustainable photocatalysis. Herein, we report the first example of COF-based energy transfer Ni catalysis. A pyrene-based COF with sp2 carbon-conjugation was synthesized and used to coordinate NiII centers through bipyridine moieties. Under light irradiation, enhanced energy transfer in the COF facilitated the excitation of Ni centers to catalyze borylation and trifluoromethylation reactions of aryl halides. The COF showed two orders of magnitude higher efficiency in these reactions than its homogeneous control and could be recovered and reused without significant loss of catalytic activity.  相似文献   

18.
Metalation of covalent organic frameworks (COFs) is a critical strategy to functionalize COFs for advanced applications yet largely relies on the pre-installed specific metal docking sites in the network, such as porphyrin, salen, 2,2′-bipyridine, etc. We show in this study that the imine linkage of simple imine-based COFs, one of the most popular COFs, readily chelate transition metal (Ir in this work) via cyclometalation, which has not been explored before. The iridacycle decorated COF exhibited more than 10-fold efficiency enhancement in (photo)catalytic hydrogen evolution from aqueous formate solution than its molecular counterpart under mild conditions. This work will inspire more functional cyclometallated COFs to be explored beyond catalysis considering the large imine COF library and the rich metallacycle chemistry.

This study describes cyclometallation as a new metal binding mode for imine-based COFs. The iridacycle decorated COF could be used for catalytic hydrogen evolution from aqueous formate solution with high stability and high efficacy.  相似文献   

19.
胡慧  闫欠欠  王明  于丽  潘伟  王宝山  高艳安 《催化学报》2018,39(9):1437-1444
共价有机框架(COFs)材料是在拓扑学基础上发展起来的一类新型有机晶体多孔聚合物.由于COFs材料具有较高的比表面积、良好的热稳定性和化学稳定性、可设计的孔结构以及容易修饰改性的特点,目前广泛用作催化剂或催化剂载体.COFs的构筑单体为有机小分子,其来源广泛且种类繁多,使得构筑单体多样化,便于通过构筑单体来调控目标材料的结构和功能.近年来对COFs的研究已经引起人们广泛关注.离子框架材料在气体分子的吸附与分离领域展示了良好性能,通过简单的离子交换过程,可以容易地将具有特定尺寸和功能的反离子引入到框架结构中来调控孔的尺寸大小,从而实现混合气体的有效分离.然而,在催化领域目前尚未见将具有特定催化功能的反离子基团引入到框架之中,研究离子框架材料的催化性能.本文设计合成了一种负电荷为骨架结构的离子型COFs材料.我们首先选取一种化学结构稳定的COF作为骨架前驱体,其中的单体具有可反应的活性基团酚羟基,然后通过与1,3-丙烷磺酸内酯进行开环反应,将烷基磺酸引入到孔中,经过弱碱处理后得到阴离子型COFs(I-COFs),然后通过简单的离子交换过程将具有催化活性的Mn2+以及[Mn(bpy)2]2+配位阳离子分别引入到COFs框架中,得到具有催化功能的新材料.我们考察了两种I-COFs对烯烃氧化制环氧化合物的催化性能,发现所得离子COFs对不同的反应底物均展示了较高的环氧化催化性能.结果证实了离子I-COF催化反应为多相催化,还表现出I-COFs催化剂具有较高的稳定性以及循环使用性能.我们认为,通过简单的离子交换过程,能够赋予I-COFs材料各种不同的功能,从而实现COFs在不同领域的应用.这为多孔材料的功能化设计提供了新的化学平台.  相似文献   

20.
Flexible covalent organic frameworks (COFs) are intriguing for their dynamic properties distinctive from rigid counterparts but still suffer from limited accessibility. Especially, controlling flexibility of COFs is challenging and the impact of different flexibility on properties of COFs has rarely been unveiled. This article reports stepwise adjustment on flexibility of two-dimensional COFs, which is realized by the designed synthesis of rigid COF (R-COF), semi-flexible COF (SF-COF), and flexible COF (F-COF) through polymerization, linker exchange, and linkage conversion with a newly developed method for reduction of hydrazone, respectively. Significant difference in breathing behavior and self-adaptive capability of the three COFs are uncovered through vapor response and iodine capture experiments. Gas sorption experiments indicate that the porosity of F-COF could switch from “close” state in nitrogen to “open” state in carbon dioxide, which are not observed for R-COF and SF-COF. This study not only develops a strategy to adjust the flexibility of COFs by tuning their linkers and linkages, but also provides a deep insight into the impact of different flexibility on properties of COFs, which lays a foundation for the development of this new class of dynamic porous materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号