首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
利用全细胞膜片钳技术,研究了稀土镧离子对非兴奋性小鼠成骨细胞(MC3T3)钙激活外向钾电流及其激活和失活动力学的影响.结果表明:MC3T3细胞钙激活外向钾电流随着电极内液中游离Ca2+浓度的增加而增加,且具有电压和胞内游离Ca2+依赖性特征.细胞外液中的稀土镧可浓度依赖性地抑制MC3T3细胞钙激活外向钾电流,其半数抑制浓度(EC50)为8.23±1.45μmol/L.50μmol/L氯化镧可使钾电流的激活曲线向正电位方向移动,而使其失活曲线向负电位方向移动,但对激活曲线和失活曲线的斜率因子k值影响都不大.研究表明:抑制钾通道电流,可使细胞膜去极化,细胞的兴奋性增加,从而增加胞外Ca2+向胞内流动,引起胞内Ca2+浓度的增加,由此而诱发一系列的生理和分子生物学事件.这一过程可能是稀土镧影响MC3T3成骨细胞生长和功能的分子作用机制之一.  相似文献   

2.
Effects of La3+ and Eu3+ on outward potassium channels (Kout+) in Vicia guard cells have been studied by patch clamping technique. Extracellular La3+ inhibited Kout+ currents with a half-inhibition concentration (IC50) of 81 μmol·L−1. Interestingly, intracellular La3+ activated Kout+ currents at a free concentration of 1.13 × 10−14 mol·L−1, and inhibited Kout+ currents at a free concentration of 5.86 × 10−14 mol·L−1. Extracellular Eu3+ also activated Kout+ currents at concentrations of 10 μmol·L−1 and 50 μmol·L−1, and inhibited Kout+ currents at concentrations of more than 1 mmol·L−1. The effects of La3+ and Eu3+ on Kout+ currents may contribute to regulation of the plant water status, which may be one of the mechanisms of the biological effect of rare earth elements.  相似文献   

3.
杜会枝  杨频 《中国化学》2006,24(3):345-349
Using the whole cell patch clamp technique, the effect of Cu^2+on transient outward K^+current (/to) and delayed rectifier K^+ current (Idr) was studied in acutely isolated rat hippocampal neurons.Ito and Idr were increased when the concentration of Cu^2+ was lower than 2 × 10^-5 and 10^-5 tool/L, respectively, and increased ratio was decreased with increasing Cu^2+concentration in the bath solutions. When the concentration continued to increase to 5× 10^-5 and 2 × 10^- 5 mol/L, the currents were hardly changed, while the concentration was more than 10^-4 and 5 × 10^-5 mol/L, the currents were inhibited remarkably. Cu^2+ (10^-5 mol/L) did not affect the activation and inactivation process of Ito. The activation curve of Idr was shifted toward positive potential, but 10^-5 mol/L Cu^2+did not affect slope factor. According to these results, it was considered that Cu^2+at low concentration in the bath solution could promote Ito and Idr while at high concentration could inhibit them, and change of amplitude was different with different membrane voltage. Conclusion was drawn: Cu^2+may be involved in the pathophysiologic mechanism of diseases with neuropathological components.  相似文献   

4.
The effects of La3+ on proliferation, cell cycles, apoptosis and ion channels were investigated in mouse embryo fibroblast NIH 3T3 cells and its possible mechanisms were explored. Our data showed that La3+ promoted cell proliferation with increased S‐phase entry and inhibited the outward potassium currents in a concentration‐dependent manner in NIH 3T3 cells. La3+ and Ca2+ had synergistic effect on cell proliferation and cell cycles. It showed that Ca2+ was needed for La3+‐promoted cell cycle progression. Using the whole‐cell voltage‐clamp technique, we found that La3+ blocked the outward potassium current in a concentration‐dependent manner in NIH 3T3 cells. Lanthanum ions can increase intracellular Ca2+ concentration through inhibition of potassium currents, which induce a series of physiological changes and improve proliferation of cells. This may be one of the molecular mechanisms of lanthanum ions induced cell proliferation. The present work provides a new perspective for understanding the biological and toxicological effects of lanthanum.  相似文献   

5.
The effects of La3+ on inward K+ channels at plasma membrane in vicia guard cells are investigated using the whole-cell patch-clamp recording mode. It is shown that La3+ on both sides of plasma membrane blocks inward K+ currents in a concentration-dependent manner, indicating that La3+ binding sites may exist on both sides of plasma membrane in guard cells in vicia. The dose response is fitted by the Michaelis-Menten relation characterized by an inhibitor constant K i of 2.56±0.25 μmol · L−1 (outside membrane) and (1.18±0.11)×10−15 mol · L−1 (inside membrane). Intracellular La3+ has much stronger inhibitory effect on inward K+ currents than extracellular La3+ does, suggesting there may exist stronger binding sites inside membrane than outside membrane. Since ion channel activities of guard cells directly affect plant stomatal movement and water status, our results imply that rare earth elements might have potential practical values in regulating plant water status and strengthening plant drought endurance.  相似文献   

6.
The electrochemical properties of single crystals of cerium fluoride alloyed with bivalent cations Sr2+, Ca2+, Ba2+, Sr2+ + Ca2+, Sr2+ + Ba2+, Ba2+ + Ca2+ and also with La3+ and La3+ + Ba2+ cations are studied using the dynamic voltammetry and impedance spectroscopy. The conductivity of symmetrical cells with Ag electrodes is determined using the method of impedance spectroscopy in the frequency range from 450 to 5 kHz at the temperatures from 20 to 100°C: for CeF3: Sr2+ (0.5 mol %) + Ba2+ (0.5 mol %), σ = σ0 exp[(?0.284 ± 0.005/kT]; for CeF3:Ca2+ (0.5 mol %) + Sr2+ (0.5 mol %), σ = σ0 exp[(?0.292 ± 0.017/kT]. The steady-state and dynamic voltammogams of symmetrical electrochemical cells with nonpolarizable reference electrodes and CeF3 single crystals alloyed with Sr2+, Ca2+, and Ba2+ bivalent cations exhibited ohmic polarization. For cells with CeF3 containing La3+ as an admixture, a hysteresis was observed, which could not be eliminated by chemical and electrochemical treatment of crystals. In the dynamic voltammetric curves of asymmetric cells with nonpolarizable and silver electrode and CeF3 crystals alloyed with Sr2+, Ca2+, and Ba2+, a range of ideal polarizability (from 0 to ~?2.7 V), and also cerium redox processes and silver fluorination-boundary regeneration were observed. In the dynamic voltammetric curves of asymmetric cells with CeF3 containing La3+ admixture, no range of ideal polarizability was observed; however, the reactions of silver fluorination and reduction of solid-electrolyte cerium were well pronounced at the corresponding potentials.  相似文献   

7.
Characteristic of Fura-2-Ca~(2 )interaction was studied based on the fluorescence technique.The apparent dissociation constants(K_d)of the Fura-2-Ca~(2 )complex were determined at different temperature.The effect of cefotaxime(CEFA)on intracellular Ca~(2 )concentration([Ca~(2 )]_i)was discussed by using a ratiometric fluorescence dye Fura-2 as a probe.The basal[Ca~(2 )]_i in resting humanperipheral lymphocytes was 100 7 nmol/L but after treatment with cefotaxime,the changes of[Ca~(2 )]_i were observed in differentconditions.In the concentration range of 1-30 μmol/L of cefotaxime[Ca~(2 )]_i increased,as a result of releasing intracellular Ca2 stores.Higher concentration of cefotaxime(50-500 μmol/L)stimulated to decrease of[Ca~(2 )]_i.  相似文献   

8.
The distribution of La3+ and Ca2+ over the cation sites in Ca2La8(SiO4)6O2 was determined by single-crystal X-ray diffraction. Ca2La8(SiO4)6O2 has the apatite structure, and all available evidence indicates that the space group is P63m, thus precluding a completely ordered structure. The 6h lattice sites are occupied by La3+. In contrast, the 4f sites are occupied equally by La3+ and Ca2+ ions. Consideration of the properties of the La3+ and Ca2+ ions suggests that this distribution is thermodynamically favored for this composition. A simple Ising model suggests ordered columns. These would not be precluded by space group P63m, if the correlation between adjacent columns were random.  相似文献   

9.
The effects of BaCl2 on slow vacuolar (SV) currents of radish are studied by using the whole-vacuolar patch-clamp recording mode. The Ca2+-dependent SV channel can be activated by cytosolic Ca2+. When 1 mmol/L BaCl2 is added into pipette solution, SV currents are suppressed remarkably. Then adding BaCl2 of different concentrations into the bath solution, SV currents reflect different effects. The results show that BaCl2 with a lower concentration (<3 mmol/L) promotes the channel currents and the currents are saturated when BaCl2 concentrations are between 1 μmol/L and 1 mmol/L, but BaCl2 with higher concentration (≥ 3 mmol/L) inhibits SV currents.  相似文献   

10.
Fenchone is a bicyclic monoterpene found in a variety of aromatic plants, including Foeniculum vulgare and Peumus boldus, and is used in the management of airways disorders. This study aimed to explore the bronchodilator effect of fenchone using guinea pig tracheal muscles as an ex vivo model and in silico studies. A concentration-mediated tracheal relaxant effect of fenchone was evaluated using isolated guinea pig trachea mounted in an organ bath provided with physiological conditions. Sustained contractions were achieved using low K+ (25 mM), high K+ (80 mM), and carbamylcholine (CCh; 1 µM), and fenchone inhibitory concentration–response curves (CRCs) were obtained against these contractions. Fenchone selectively inhibited with higher potency contractions evoked by low K+ compared to high K+ with resultant EC50 values of 0.62 mg/mL (0.58–0.72; n = 5) and 6.44 mg/mL (5.86–7.32; n = 5), respectively. Verapamil (VRP) inhibited both low and high K+ contractions at similar concentrations. Pre-incubation of the tracheal tissues with K+ channel blockers such as glibenclamide (Gb), 4-aminopyridine (4-AP), and tetraethylammonium (TEA) significantly shifted the inhibitory CRCs of fenchone to the right towards higher doses. Fenchone also inhibited CCh-mediated contractions at comparable potency to its effect against high K+ [6.28 mg/mL (5.88–6.42, n = 4); CCh] and [6.44 mg/mL (5.86–7.32; n = 5); high K+]. A similar pattern was obtained with papaverine (PPV), a phosphodiesterase (PDE), and Ca2+ inhibitor which inhibited both CCh and high K+ at similar concentrations [10.46 µM (9.82–11.22, n = 4); CCh] and [10.28 µM (9.18–11.36; n = 5); high K+]. However, verapamil, a standard Ca2+ channel blocker, showed selectively higher potency against high K+ compared to CCh-mediated contractions with respective EC50 values of 0.84 mg/mL (0.82–0.96; n = 5) 14.46 mg/mL (12.24–16.38, n = 4). The PDE-inhibitory action of fenchone was further confirmed when its pre-incubation at 3 and 5 mg/mL potentiated and shifted the isoprenaline inhibitory CRCs towards the left, similar to papaverine, whereas the Ca2+ inhibitory-like action of fenchone pretreated tracheal tissues were authenticated by the rightward shift of Ca2+ CRCs with suppression of maximum response, similar to verapamil, a standard Ca2+ channel blocker. Fenchone showed a spasmolytic effect in isolated trachea mediated predominantly by K+ channel activation followed by dual inhibition of PDE and Ca2+ channels. Further in silico molecular docking studies provided the insight for binding of fenchone with Ca2+ channel (−5.3 kcal/mol) and K+ channel (−5.7), which also endorsed the idea of dual inhibition.  相似文献   

11.
The new compounds La1?xMxMnO3 (0.05 ? x ? 0.4 for M = K; x = 0.2 for M = Na, Rb) have been prepared. La1?xKxMnO3 (0.05 ? x ? 0.4), LaMnO3.01, LaMnO3.15, La0.8Na0.2MnO3, and La0.8Rb0.2MnO3 have been used as catalysts in the reduction of NO. La0.8K0.2MnO3 has also been used in the catalytic decomposition of NO. The activity of these catalysts is related to the presence of a Mn3+/Mn4+ mixed valence and to the relative ease of forming oxygen vacancies in the solid. The presence of cation vacancies in LaMnO3.15 and the substitution of La3+ by alkali ions in LaMnO3 increases the catalytic activity. The reduction of NO involves both molecular and dissociative adsorption of NO.  相似文献   

12.
Perovskite-type lithium ionic conductors were explored in the (LixLa1−x/3)ScO3 system following their syntheses via a high-pressure solid-state reaction. Phase identification indicated that a solid solution with a perovskite-type structure was formed in the range 0 ≤ x < 0.6. When x = 0.45, (Li0.45La0.85)ScO3 exhibited the highest ionic conductivity and a low activation energy. Increasing the loading of lithium as an ionic diffusion carrier expanded the unit cell volume and contributed to the higher ionic conductivity and lower activation energy. Cations with higher oxidation numbers were introduced into the A/B sites to improve the ionic conductivity. Ce4+ and Zr4+ or Nb5+ dopants partially substituted the A-site (La/Li) and B-site Sc, respectively. Although B-site doping produced a lower ionic conductivity, A-site Ce4+ doping improved the conductive properties. A perovskite-type single phase was obtained for (Li0.45La0.78Ce0.05)ScO3 upon Ce4+ doping, providing a higher ionic conductivity than (Li0.45La0.85)ScO3. Compositional analysis and crystal-structure refinement of (Li0.45La0.85)ScO3 and (Li0.45La0.78Ce0.05)ScO3 revealed increased lithium contents and expansion of the unit cell upon Ce4+ co-doping. The highest ionic conductivity of 1.1 × 10−3 S cm−1 at 623 K was confirmed for (Li0.4Ce0.15La0.67)ScO3, which is more than one order of magnitude higher than that of the (LixLa1−x/3)ScO3 system.  相似文献   

13.
Five series of perovskite-type compounds in the system La1−xCaxCr1−yTiyO3 with the nominal compositions y=0, x=0-0.5; y=0.2, x=0.2-0.8; y=0.5, x=0.5-1.0; y=0.8, x=0.6-1.0 and y=1, x=0.8-1 were synthesized by a ceramic technique in air (final heating 1350 °C). On the basis of the X-ray analysis of the samples with (Ca/Ti)?1, the phase diagram of the CaTiO3-LaCrIIIO3-CaCrIVO3 quasi-ternary system was constructed. Extended solid solution with a wide homogeneity range is formed in the quasi-ternary system CaCrIVO3-CaTiO3-LaCrIIIO3. The solid solution La(1−x′−y)Ca(x′+y)CrIVxCrIII(1−x′−y)TiyO3 exists by up to 0.6-0.7 mol fractions of CaCrIVO3 (x<0.6-0.7) at the experimental conditions. The crystal structure of the compounds is orthorhombic in the space group Pbnm at room temperature. The lattice parameters and the average interatomic distances of the samples within the solid solution ranges decrease uniformly with increasing Ca content. Outside the quasi-ternary system, the nominal compositions La0.1Ca0.9TiO3, La0.2Ca0.8TiO3, La0.4Ca0.6Cr0.2Ti0.8O3 and La0.3Ca0.7Cr0.2Ti0.8O3 in the system La1−xCaxCr1−yTiyO3 were found as single phases with an orthorhombic structure. In the temperature range between 850 and 1000 °C, the synthesized single-phase compositions are stable at pO2=6×10−16-0.21×105 Pa. Oxygen stoichiometry and electrical conductivity of the separate compounds were investigated as functions of temperature and oxygen partial pressure. The chemical stability of these oxides with respect to oxygen release during thermal dissociation decreases with increasing Ca-content. At 900 °C and oxygen partial pressure 1×10−15-0.21×105 Pa, the compounds with x>y (acceptor doped) are p-type semiconductors and those with x<y (donor doped) and x=y are n-type semiconductors. The type and level of electrical conductivity are functions of the concentration ratios of cations occupying the B-sites of the perovskite structures: [Cr3+]/[Cr4+] and [Ti4+]/[Ti3+]. The maximum electrical conductivity at 900 °C and pO2=10−15 Pa was found for the composition La0.1Ca0.9TiO3 (near 50 S/cm) and in air at 900 °C for La0.5Ca0.5CrO3 (close to 100 S/cm).  相似文献   

14.
Thermoelectric properties of polycrystalline La1−xSrxCoO3, where Sr2+ is substituted in La3+ site in perovskite-type LaCoO3, have been investigated. Sr-doping increases the electrical conductivity (σ) of La1−xSrxCoO3, and also decreases the Seebeck coefficient (S) for 0.01?x?0.40. A Hall coefficient measurement reveals that the increase in electrical conductivity arises from increases in both carrier concentration and the Hall mobility. The decrease in the Seebeck coefficient is caused by a decrease in carrier effective mass as well as increase in carrier concentration. The highest power factor (σS2) is 3.7×10−4 W m−1 K−2 at 250 K for x=0.10. The thermal conductivity (κ) is about 2 W m−1 K−1 at 300 K for 0?x?0.04, and increases for x?0.05 because of an increase in heat transport by conductive carrier. The thermoelectric properties of La1−xSrxCoO3 are improved by Sr-doping, and the figure of merit (Z=σS2 κ−1) reaches 1.6×10−4 K−1 for x=0.06 at 300 K (ZT=0.048). For heavily Sr-doped samples, the thermoelectric properties diminish mainly because of the decrease in the Seebeck coefficient and the increase in thermal conductivity.  相似文献   

15.
Dimethyl-4,4-dimethoxy-5,6,5′,6′-dimethylene dioxy biphenyl-2,2-dicarboxylate (DDB) liver drug is used as a novel ionophore in plasticized poly (vinyl chloride) (PVC) matrix membrane sensors for barium ions. Optimum performance characteristics are displayed by membrane sensor incorporating DDB ionophore, potassium tetrakis(4-chlorophenyl)borate as lipophilic salt, and o-nitrophenyloctyl ether as plasticizer. The sensor exhibits a linear response over the concentration range 10−1-10−5 mol l−1 BaCl2 with a Nernstian slope of 30 mV per decade and high selectivity towards Ba2+ with respect to Li+, Na+, K+, Rb+, NH4+, Mg2+, Ca2+, Sr2+, Mn2+, Co2+, Ni2+, Cd2+, Al3+, La3+, and Ce3+ ions. The sensor response is stable over a wide pH range (4-9) and the lifetime is about 2 months. The proposed sensor is successfully applied to the determination of Ba2+contents of some rocks.  相似文献   

16.
The novel orange-red light emitting La7Ta3W4O30:xSm3+ (x = 0.005–0.20) phosphors were synthesized via the solid-state reaction method. The crystal structure, photoluminescence (PL) properties, optimum concentration, color purity, decay life, and thermal stability of the samples were systematically studied. Under the excitation of 404 nm, La7Ta3W4O30:Sm3+ emits intense orange-red light at 597 nm. The PL spectra of La7Ta3W4O30:Sm3+ phosphors are ascribed to the 4G5/2 to 6HJ (J = 5/2, 7/2, 9/2, and 11/2) transitions of Sm3+ ions. The concentration quenching occurs at the doping level of 1 mol%. The quenching temperature is higher than 500 K. Finally, a white LED (w-LED) with the Commission Internationale de L'Eclairage (CIE) chromaticity coordinates of (0.312, 0.296) and good color rendering index (Ra) of 86 was fabricated. As a consequence, all the results suggest that the orange-red phosphors La7Ta3W4O30:Sm3+ have potential applications in w-LEDs structures.  相似文献   

17.
The crystal structure, magnetic and electrical properties of the La1−xCaxMnO3−γ (x=0.30, 0.50; 0?γ?0.50) oxygen-deficient manganites have been studied. It is found that the compounds La0.70Ca0.30MnO3−γ possess a long-range ferromagnetic order up to γ=0.06 and a cluster spin glass behavior at 0.06<γ?0.20. Antiferromagnetic state of La0.50Ca0.50MnO3−γ (γ=0) composition transforms into inhomogeneous ferromagnetic one at γ=0.04. The system converts into cluster spin glass state at γ=0.10. As oxygen deficit reaches the value γ=0.25, a new type of ferromagnetic phase appears. The fraction of this ferromagnetic phase is the highest in the composition γ=0.30. It is supposed that the compounds with γ?0.35 represent an antiferromagnetic medium with inclusions of the ferromagnetic phase. The strongly reduced samples exhibit a large magnetoresistance below the temperature, at which the spontaneous magnetization develops. The magnetic phase diagrams of both La0.70Ca0.30MnO3−γ and La0.50Ca0.50MnO3−γ systems have been constructed. We argue, that the oxygen vacancies are disordered in the La0.70Ca0.30MnO3−γ system in the studied region of oxygen vacancies concentration (0?γ<0.20) whereas for the La0.50Ca0.50MnO3−γ they tend to order at γ>0.25 in a manner of Sr2Fe2O5-type crystal structure. This study shows that Mn3+-O-Mn3+ ferromagnetic interaction may play an important role in the formation of magnetic state of manganites.  相似文献   

18.
A linear tetraoxime ligand H4L bearing chiral (S)-2-hydroxylpropyl groups at both ends was synthesized. Complexation between H4L with Zn2+ and Mn+ (=Ca2+, Y3+, La3+) afforded helical trinuclear complex [LZn2M]n+. The helical sense was the most effectively induced when Ca2+ was used as the central metal Mn+.  相似文献   

19.
膜片钳法研究镁离子对萝卜液泡膜SV通道的影响   总被引:1,自引:0,他引:1  
张朝峰  杨频  薛绍武 《化学学报》2005,63(12):1147-1150
用膜片钳全液泡记录方式研究了Mg2+对萝卜(Raphanus sativus L.)液泡膜上SV通道电流的影响. 结果表明: 用EGTA配位Ca2+后, 胞质Mg2+不能够代替Ca2+来激活SV通道; 外液中不同浓度的Mg2+对通道电流有抑制作用, 并且呈一定的浓度依赖性, 用Hill方程拟合浓度依赖性曲线, 得抑制常数Ki=(1.94±0.11) mmol/L, 而内液中的Mg2+不影响通道电流. 这一结果为进一步研究镁对植物生理活动的影响从通道水平提供了重要依据.  相似文献   

20.
Garnet-structure related metal oxides with the nominal chemical composition of Li5La3Nb2O12, In-substituted Li5.5La3Nb1.75In0.25O12 and K-substituted Li5.5La2.75K0.25Nb2O12 were prepared by solid-state reactions at 900, 950, and 1000 °C using appropriate amounts of corresponding metal oxides, nitrates and carbonates. The powder XRD data reveal that the In- and K-doped compounds are isostructural with the parent compound Li5La3Nb2O12. The variation in the cubic lattice parameter was found to change with the size of the dopant ions, for example, substitution of larger In3+(rCN6: 0.79 Å) for smaller Nb5+ (rCN6: 0.64 Å) shows an increase in the lattice parameter from 12.8005(9) to 12.826(1) Å at 1000 °C. Samples prepared at higher temperatures (950, 1000 °C) show mainly bulk lithium ion conductivity in contrast to those synthesized at lower temperatures (900 °C). The activation energies for the ionic conductivities are comparable for all samples. Partial substitution of K+ for La3+ and In3+ for Nb5+ in Li5La3Nb2O12 exhibits slightly higher ionic conductivity than that of the parent compound over the investigated temperature regime 25-300 °C. Among the compounds investigated, the In-substituted Li5.5La3Nb1.75In0.25O12 exhibits the highest bulk lithium ion conductivity of 1.8×10−4 S/cm at 50 °C with an activation energy of 0.51 eV. The diffusivity (“component diffusion coefficient”) obtained from the AC conductivity and powder XRD data falls in the range 10−10-10−7 cm2/s over the temperature regime 50-200 °C, which is extraordinarily high and comparable with liquids. Substitution of Al, Co, and Ni for Nb in Li5La3Nb2O12 was found to be unsuccessful under the investigated conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号